
Hands-On Tutorial Of P4

Xuanchi Guo @ TU Berlin @ AIoTwin Summer School

http://tiny.cc/aiotwin1709

– The Data Plane Programming Language

http://tiny.cc/aiotwin1709

Software-Defined Networking (SDN)

Software-Defined Networking (SDN)

A. Emerged in the early 2000s to address limitations of conventional networks.
B. Separation of control and data planes

a. Data plane: consists of network devices (switches/routers) responsible for storing,
forwarding, and processing data packets.

b. Control plane: protocols used for defining the matching and processing rules of the
data plane elements.

Why Do We Need P4?

A. Fixed Protocol Design: Specific packet headers and fixed-function switches.
B. Lack of Flexibility: Difficult to add new protocols or modify packet formats.

Protocol
Independence

● P4 stands for
Programming
Protocol-Independent
Packet Processing

● Configure a packet
parser

● Define a set of
typed match+action
tables

Target
Independence Reconfigurability

Three Goals of P4 Language

● Program without
knowledge of switch
details

● Rely on compiler to
configure the target
switch

● Change parsing
and processing
in the field

Example Architectures and Targets

P4-programmable 100Gb bare metal switch
with 6.4 Tbps Intel Tofino ASIC

NVIDIA BlueField-3 DPU

Copyright © 2018 – P4.org

P4 Programmable Pipeline
● Parsers – Reads incoming packets and extracts headers.

● Match-Action Tables – Makes forwarding or processing decisions.

● Deparsers – Reassembles and modifies packets before sending them out.

Copyright © 2018 – P4.org

Programming a P4 Target

Copyright © 2018 – P4.org

What you can do with P4
In-band Network Telemetry – INT[1]

Fast In-Network cache for key-value stores – NetCache[2]

Aggregation for MapReduce Applications[3]

In-Network Machine Learning Inference[4](e.g. SmartEdge Usecase)

… and much more
[1]Kim, Changhoon, et al. "In-band network telemetry via programmable dataplanes." ACM SIGCOMM. Vol. 15. 2015.
[2]Jin, Xin, et al. "Netcache: Balancing key-value stores with fast in-network caching." Proceedings of the 26th
Symposium on Operating Systems Principles. 2017.
[3]Sapio, Amedeo, et al. "In-network computation is a dumb idea whose time has come." Proceedings of the 16th ACM
Workshop on Hot Topics in Networks. 2017.
[4]Zheng, Changgang, et al. "Automating in-network machine learning." arXiv preprint arXiv:2205.08824 (2022).

P4 Primitive Types
P4 provides a collection of types for describing

various kinds of packet data:

● bit<n>: Unsigned integer (bitstring) of size n

● bit is the same as bit<1>

● int<n>: Signed integer of size n (>=2)

● varbit<n>: Variable-length bitstring

P4 is statically-typed; ill-typed
programs will be reject by compiler!

P4 Header Formats
● Packet - Headers - Fields

● E.g. an Ethernet packet has the following structure

P4 Header Formats

● P4 provides a built-in type for

headers; syntax resembling C struct

● Ordered list of fields

● A field has a name and width

● Can contain bit<n>, int<n>, and

varbit<n>

● “dot” notation for a field, e.g:

ethernet.dstAddr

Parsers

● Maps the bits in the actual packet

into typed representations

● Behaves like a state machine

● Every parser has three predefined

states: start, accept, reject

● Other states may be defined by

the programmer

Match-Action Tables
● In P4, the primary building block for packet processing is the match-action table

● Action: Procedure with a sequence of commands.

● Parameters can come from the control plane or within the program.

● Example: Modifying the packet’s output port.

Match-Action Tables
● Compare packet headers to table

entries (matching).

● Execute actions like forwarding,

dropping, or modifying packets.

● Example: next_hop for ipv4

destination-based forwarding.

● Key: hdr.ipv4.dstAddr : lpm (Longest

Prefix Match).

● Actions: set_output_port, drop.

● Default Action: drop for unmatched

packets.

P4 Controls

● Control: Similar to C functions (without loops).

● Can declare variables, create tables, etc.

● Functionality specified by code in apply statement.

Example: Simple Actions

Deparsers

Assembles the headers back

into a well-formed packet

P4 Program Template(V1Model)

Copyright © 2018 – P4.org

—Benjamin Franklin & Confucius

“Tell me and I forget,
teach me and I remember,
involve me and I learn.”

Hands-On
Session

Good To know Before P4 Coding
We’ll be using several software tools for our experiments:
➔ Bmv2: a P4 software switch
➔ p4c: the reference P4 compiler
➔ Mininet: a lightweight network emulation environment
P4APP
➔ a docker-based tool that can be used to develop, run, debug,

and test P4 programs.
➔ It is easy to install and simple to use.
➔ p4app uses a software switch to run the developed P4 program,

and mininet can be used for testing in an emulation
environment.

Topology
● The network topology used

in our tutorial is triangular
● Each host connects to a

switch.
● The details of hosts (i.e., h1,

h2, and h3) and switches
(i.e., S1, S2, and S3) are
shown in the figure.

Run P4 in P4app
1. Install docker

2. Clone repository via this command:
git clone https://git.tu-berlin.de/xuanchiguo97/aiotwinp4.git

3. Open the directory
cd aiotwinp4/examples

4. Execute p4app run command at the first time, which will take a while to
download the docker image containing the P4 compiler and tools:

./p4app run [example_name.p4app]

5. [Optional] move p4app to system path $path so that you can run p4app from any
location, e.g:

cp p4app /usr/local/bin

Access these slides
http://tiny.cc/aiotwin1709

Following instructions are also available in the repository’s README.

https://docs.docker.com/engine/install/
http://tiny.cc/aiotwin1709

Demo: Simple L3 forwarding
Step 1: Run the starter code

❏ ./p4app run basic.p4app

❏ After this step you'll see the terminal of mininet

❏ Try to ping between hosts in the topology:

❏ mininet> pingall or

❏ mininet> h1 ping h2

❏ Quit mininet: mininet > exit

Step 2: Implement the forwarding logic
1) Header type definitions for Ethernet (ethernet_t) and IPv4

(ipv4_t).
2) TODO: Parsers for Ethernet and IPv4 that populate ethernet_t and

ipv4_t fields.
3) An action to drop a packet, using mark_to_drop().
4) TODO: An action (called ipv4_forward) that:

a) Sets the egress port for the next hop.
b) Updates the ethernet source address with the address of the

switch.
c) Updates the ethernet destination address with the address of

the next hop.
d) Decrements the TTL.

5) TODO: Fix ingress control logic that:
a) ipv4_lpm table should be applied only when IPv4 header is

valid
6) TODO: A deparser that selects the order in which fields inserted

into the outgoing packet.

Step 3: Populate flow rules
1) TODO control plane logic: you need to define different flow

rules in each switch so that they know how to forward the
traffic to the destination.

2) commands1.txt, commands2.txt, commands3.txt represent the
rules for the tables in the switch S1, S2, and S3,
respectively.

3) The format of adding flow rules in commands[1-3].txt should
be like:
table_add [table name] [action name] [table key] => [action
parameter] [action parameter 2] [...]

4) An example using ipv4_lpm table in basic.p4:
table_add ipv4_lpm ipv4_forward 10.0.1.1/32 =>
00:00:00:00:01:01 1

Step 4: Run your solution

If the P4 program and the defined flow rules are correct, it is
possible to reach all hosts by using pingall in mininet:

mininet> pingall
*** Ping: testing ping reachability
h1 -> h2 h3
h2 -> h1 h3
h3 -> h1 h2

Demo: Calculator

A super simple P4 program showing you the

in-computing function of P4!

Computer graphics 01
You can describe the topic of the section here

Software and media apps02
You can describe the topic of the section here

Data modeling/warehousing03
You can describe the topic of the section here

Modeling, virtual environments04
You can describe the topic of the section here

Digital & inf. resources design05
You can describe the topic of the section here

