Learning under Distribution Shifts

16 June 2025 Myeongho Jeon

2. Distribution Shifts and the Challenges They Pose

3. Approaches for Distribution Shifts

2. Distribution Shifts and the Challenges They Pose

3. Approaches for Distribution Shifts

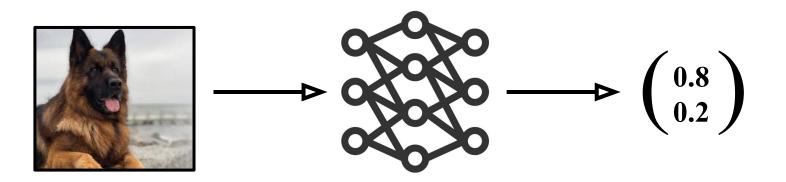
Training Dataset

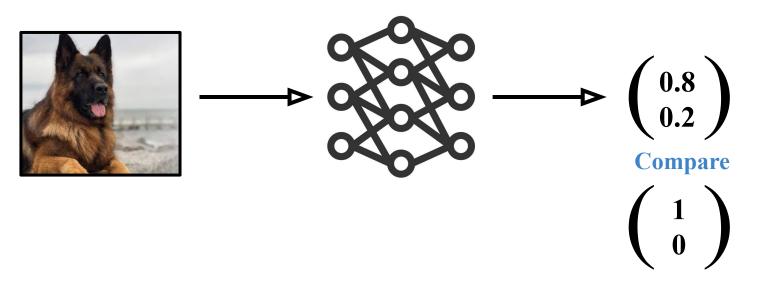
$$X = \{x_1, x_2, \cdots, x_N\}$$

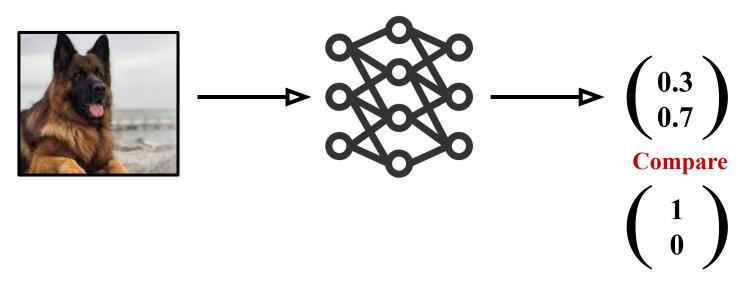
$$Y = \{y_1, y_2, \cdots, y_N\}$$

Dog (O) Cat (X)

Dog (X) Cat (O)



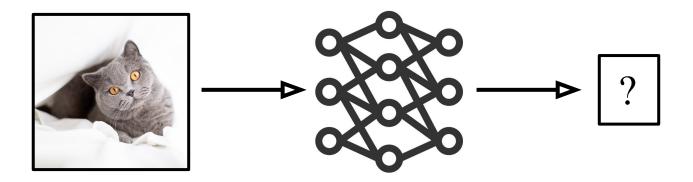


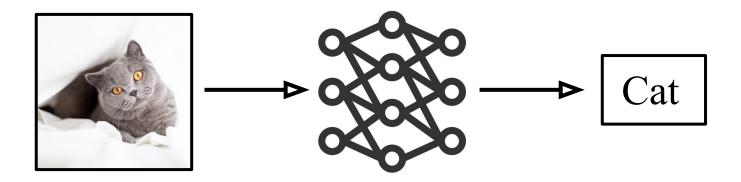


Machine Learning

Train the model by **minimizing** the empirical risk

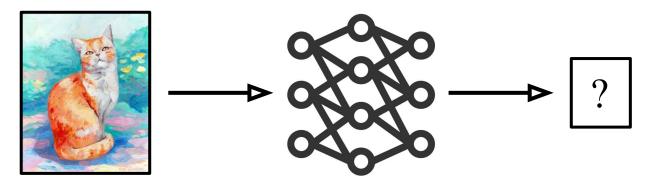
$$R(f) = \mathbb{E}_{(x,y)\sim p} \left[\mathcal{L}(y, f(x)) \right]$$

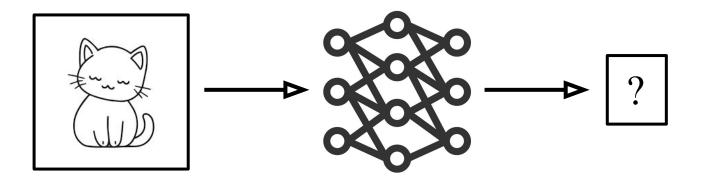


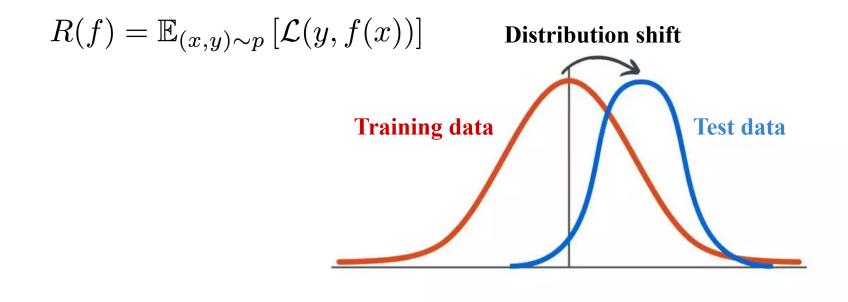


2. Distribution Shifts and the Challenges They Pose

3. Approaches for Distribution Shifts



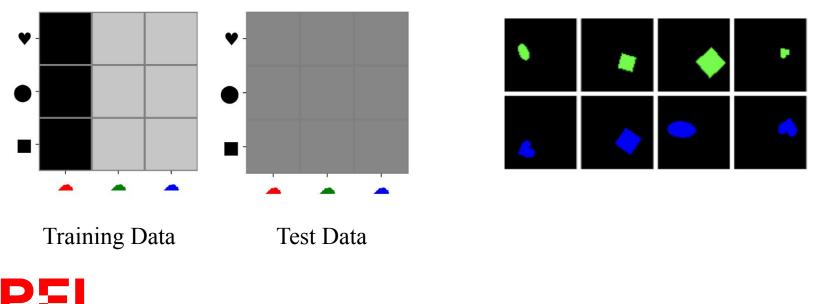




$$|R_{\text{train}}(f) - R_{\text{test}}(f)| = \left| \mathbb{E}_{(x,y) \sim p_{\text{train}}} \left[\mathcal{L}(y, f(x)) \right] - \mathbb{E}_{(x,y) \sim p_{\text{test}}} \left[\mathcal{L}(y, f(x)) \right] \right| > \epsilon.$$

Distribution Shift Types

1. Domain Shift

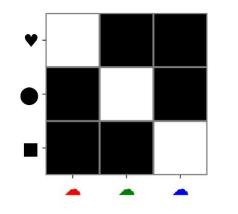


Distribution Shift Types

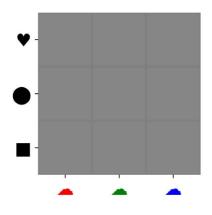
1. Domain Shift

Distribution Shift Types

2. Spurious Correlation



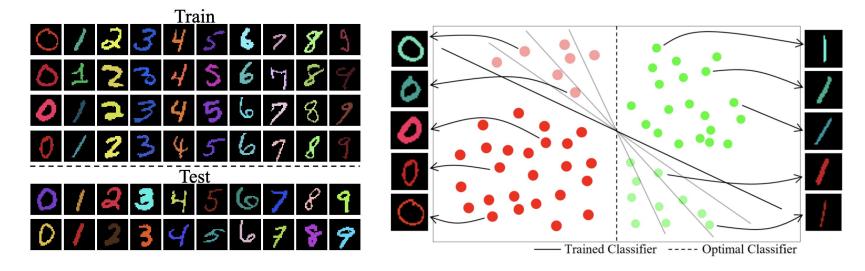
Training Data



Test Data

Distribution Shift Types

2. Spurious Correlation

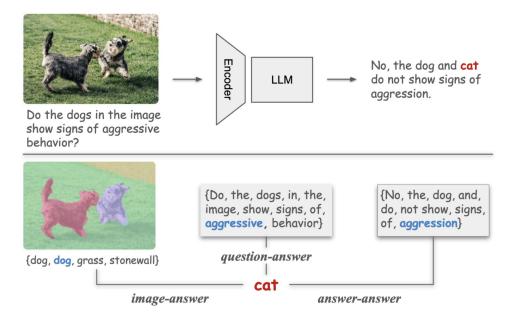


Kim, Byungju, et al. "Learning not to learn: Training deep neural networks with biased data." CVPR 2019. 19

Distribution Shift Types

2. Spurious Correlation

Distribution Shift in Large Vision Language Model



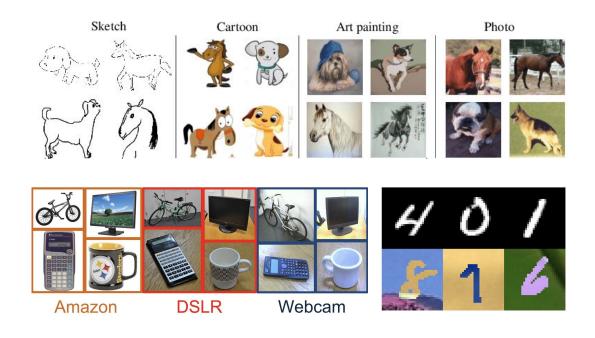
Distribution Shift in Large Vision Language Model

2. Distribution Shifts and the Challenges They Pose

3. Approaches for Distribution Shifts

- 1. Benchmarks to evaluate distribution shifts
- 2. Model to address domain shift
- 3. Model to address spurious correlation
- 4. Zero-shot inference with foundation model (e.g., ChatGPT)

Benchmark



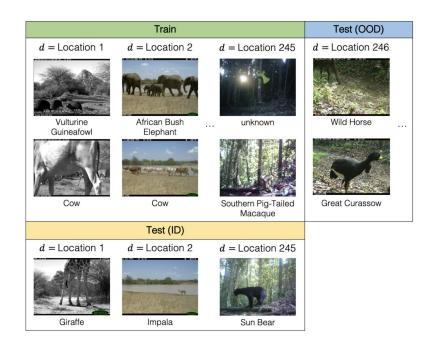
Li, Da, et al. "Deeper, broader and artier domain generalization." ICCV 2017. 25

Benchmark

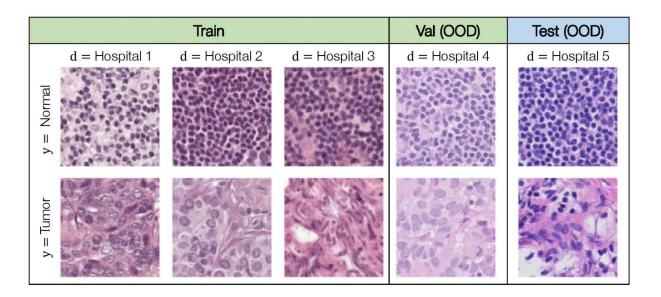
		Dor	main generalizat	ion		Subpopulation shift	Dom	ain generalizatior	n + subpopulati	ion shift
Dataset	iWildCam	Camelyon17	RxRx1	OGB-MolPCBA	GlobalWheat	CivilComments	FMoW	PovertyMap	Amazon	Py150
Input (x)	camera trap photo	o tissue slide	cell image	molecular graph	wheat image	online comment	satellite image	satellite image	product review	code
Prediction (y)	animal species	tumor	perturbed gene	bioassays	wheat head bbo	x toxicity	land use	asset wealth	sentiment	autocomplete
Domain (d)	camera	hospital	batch	scaffold	location, time	demographic	time, region	country, rural-urb	an user	git repository
# domains	323	5	51	120,084	47	16	16 x 5	23 x 2	2,586	8,421
# examples	203,029	455,954	125,510	437,929	6,515	448,000	523,846	19,669	539,502	150,000
Train example						What do Black and LGBT people have to do with bicycle licensing?		N.	Overall a solid package that has a good quality of construction for the price.	import numpy as np norm=np
Test example						As a Christian, I will not be patronizing any of those businesses.			I *loved* my French press, it's so perfect and came with all this fun stuff!	<pre>import subprocess as sp p=sp.Popen() stdout=p</pre>
Adapted from	Beery et al. 2020	Bandi et al. 2018	Taylor et al. 2019	Hu et al. 2020	David et al. 2021	Borkan et al. 2019	Christie et al. 2018	Yeh et al. 2020	Ni et al. 2019	Raychev et al. 2016

Koh, Pang Wei, et al. "Wilds: A benchmark of in-the-wild distribution shifts." ICML 2021.

Benchmark



Benchmark



Benchmark

		Train	Test		
Satellite image (x)		No.			
Country / Urban-rural (d)	Angola / urban	Angola / rural	Angola / urban	Kenya / urban	Kenya / rural
Asset index (y)	0.259	-1.106	2.347	0.827	0.130

Koh, Pang Wei, et al. "Wilds: A benchmark of in-the-wild distribution shifts." ICML 2021.

Benchmark

	Repository ID (<i>d</i>)	Source code context (x)	Next tokens (y)
Train	Repository 1	from easyrec.gateway import EasyRec <eol> gateway = EasyRec('tenant','key') <eol> item_type = gateway.</eol></eol>	get_item_type
		<pre> response = gateway.get_other_users() <eol> get_params = HTTPretty.</eol></pre>	last_request
	Repository 2	import numpy as np <eol> if np.linalg.norm(target - prev_target) > far_threshold: <eol> norm = np.</eol></eol>	linalg
		<pre> new_trans = np.zeros((n_beats + max_beats, n_beats) <eol> new_trans[:n_beats,:n_beats] = np.</eol></pre>	max
	:		
Test	Repository 6,001	<pre> if e.errno == errno.ENOENT: <eol> continue <eol> p = subprocess.Popen () <eol> stdout = p.</eol></eol></eol></pre>	communicate
		<pre> command = shlex.split(command) <eol> command = map(str, command) <eol> env = os.</eol></eol></pre>	environ
	:		

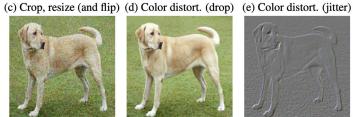
Data Augmentation

"Let's help the model become more familiar with a wider variety of data"

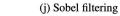
(a) Original

(f) Rotate $\{90^\circ, 180^\circ, 270^\circ\}$

(b) Crop and resize



(i) Gaussian blur



Data Augmentation

"Let's help the model become more familiar with a wider variety of data"

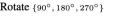
(a) Original

(f) Rotate $\{90^\circ, 180^\circ, 270^\circ\}$

(b) Crop and resize

(c) Crop, resize (and flip) (d) Color distort. (drop) (e) Color distort. (jitter)





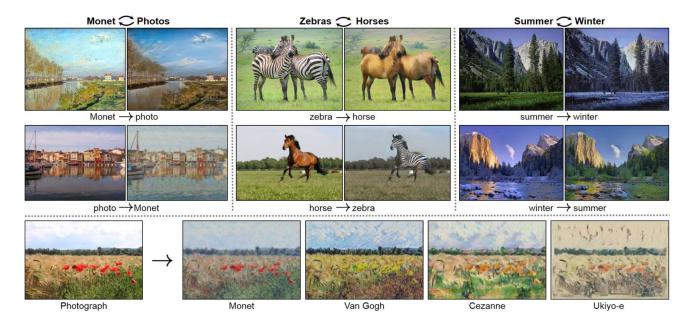
(h) Gaussian noise

(i) Gaussian blur

(j) Sobel filtering

32

Model-based Data Augmentation

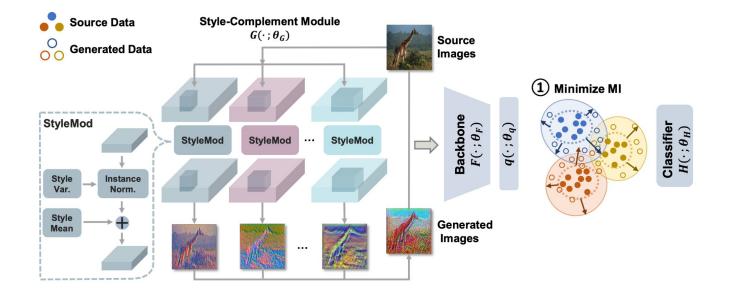


EPFL

Gatys, Leon A., et al. "Image style transfer using convolutional neural networks." CVPR 2016. 33

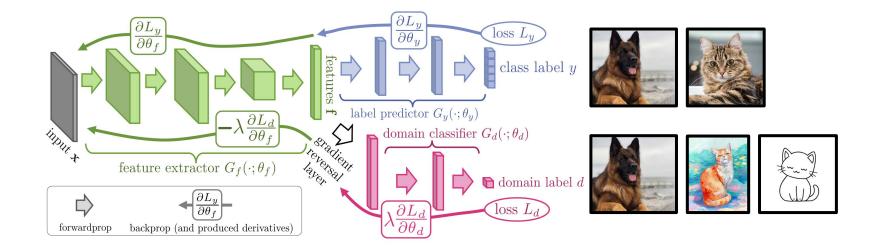
Model-based Data Augmentation

Ξ**Ρ**Σ





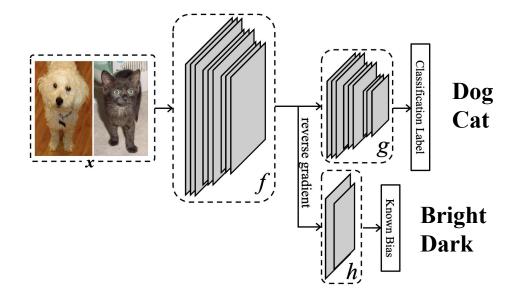
Domain Adversarial Neural Network



Ganin, Yaroslav, et al. "Domain-adversarial training of neural networks." JMLR 2016.

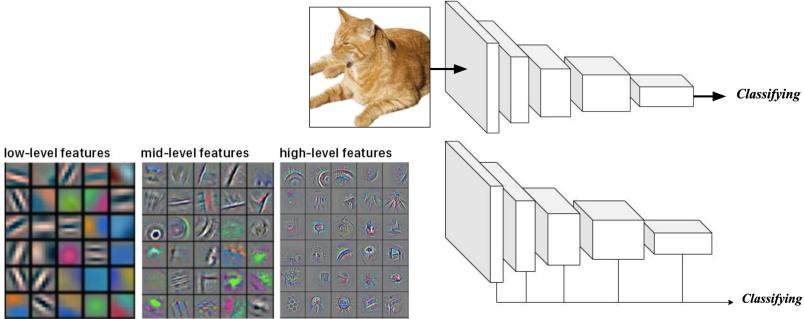
Approaches for Spurious Correlations

Learning not to Learn



Approaches for Spurious Correlations

Unbiasing Network



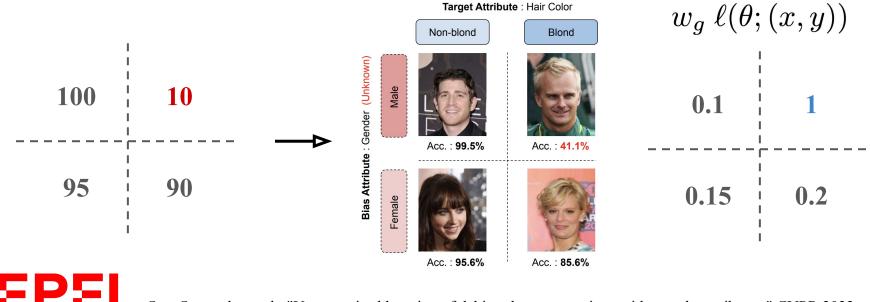
EPFL

Jeon, Myeongho, et al. "A conservative approach for unbiased learning on unknown biases." CVPR 2022. 37

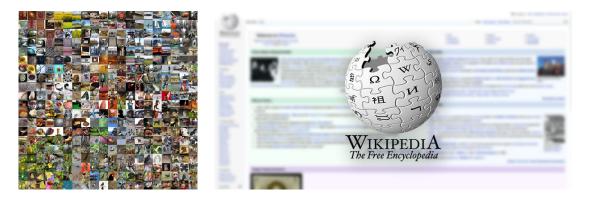
Approaches for Spurious Correlations

Weighted Resampling

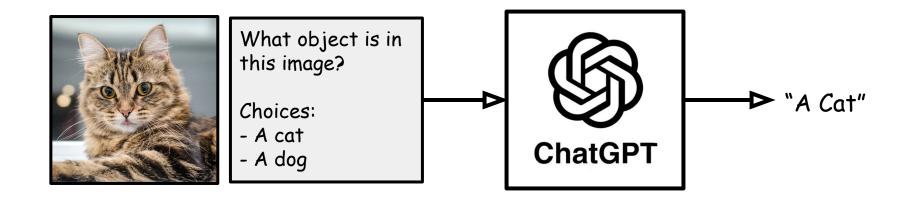
"Let's assign higher weights to underrepresented data during training"



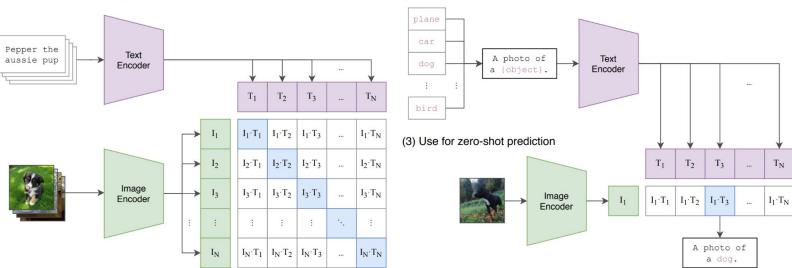
"Let's use a foundation model that has been trained on a large amount of data!"



Zero-shot Inference with Foundation Model



Zero-shot Inference with Foundation Model

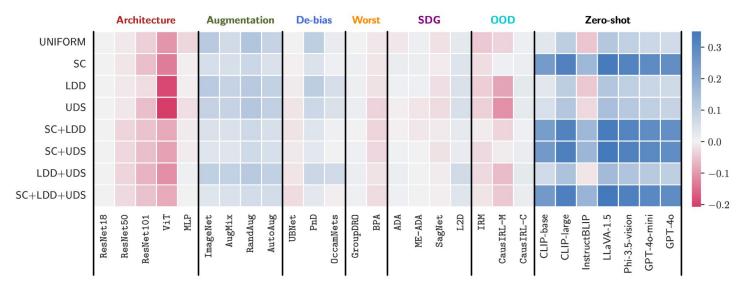


(2) Create dataset classifier from label text

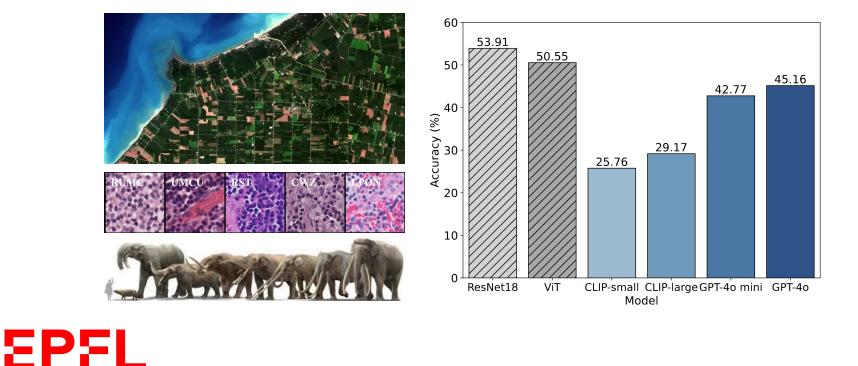
Comparison of approaches

Generalization Algorithms			
Architecture	ResNet18, ResNet50, ResNet101 (He et al., 2016), ViT (Dosovitskiy et al., 2020), MLP (Vapnik, 1991).		
Heuristic augmentation	Imagenet (He et al., 2016), AugMix (Hendrycks et al., 2019), RandAug (Cubuk et al., 2020), AutoAug (Cubuk et al., 2019).		
De-biasing	UBNet (Jeon et al., 2022a), PnD (Li et al., 2023), OccamNets (Shrestha et al., 2022).		
Worst-case generalization	GroupDRO (Sagawa et al., 2019), BPA (Seo et al., 2022).		
Single domain generalization	ADA (Volpi et al., 2018), ME-ADA (Zhao et al., 2020), SagNet (Nam et al., 2021), L2D (Wang et al., 2021).		
Out-of-distribution generalization	IRM (Arjovsky et al., 2019), CausIRL (Chevalley et al., 2022).		
Zero-shot inference with foundation model	CLIP (Radford et al., 2021), InstructBLIP (Dai et al., 2024), LLaVA-1.5 (Liu et al., 2023), Phi-3.5-vision (Abdin et al., 2024), GPT-40-mini, GPT-40 (OpenAI, 2024).		

- 1. Simple data augmentation is more effective than state-of-the-art models.
- 2. Zero-shot inference with foundation model is very effective.



Distribution shifts in foundation model



Reference

[1] Wiles, Olivia, et al. "A Fine-Grained Analysis on Distribution Shift." ICLR 2022.

[2] Zhang, Yue, et al. "Alleviating Hallucinations of Large Language Models through Induced Hallucinations." CoRR 2023.

[3] Jeon, Myeongho, et al. "An Analysis of Model Robustness across Concurrent Distribution Shifts." TMLR 2025.

[4] Wang, Zijian, et al. "Learning to diversify for single domain generalization." ICCV 2021.

[5] Koh, Pang Wei, et al. "Wilds: A benchmark of in-the-wild distribution shifts." ICML 2021.

[6] Kim, Byungju, et al. "Learning not to learn: Training deep neural networks with biased data." CVPR 2019.

[7] Jeon, Myeongho, et al. "A conservative approach for unbiased learning on unknown biases." CVPR 2022.

[8] Radford, Alec, et al. "Learning transferable visual models from natural language supervision." ICML 2021.

[9] Li, Da, et al. "Deeper, broader and artier domain generalization." ICCV 2017.

[10] Ganin, Yaroslav, et al. "Domain-adversarial training of neural networks." JMLR 2016.

[11] Gatys, Leon A., et al. "Image style transfer using convolutional neural networks." CVPR 2016.

[12] Seo, Seonguk, et. al., "Unsupervised learning of debiased representations with pseudo-attributes." CVPR 2022.

EPFL

Thank you!

