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Machine Learning

Train the model by minimizing the empirical risk
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Distribution Shift Types

1. Domain Shift
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Wiles, Olivia, et al. "A Fine-Grained Analysis on Distribution Shift." ICLR 2022.
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Distribution Shift Types

2. Spurious Correlation

19Kim, Byungju, et al. "Learning not to learn: Training deep neural networks with biased data." CVPR 2019.
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Distribution Shift in Large Vision Language Model
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Approaches for Distribution Shifts

1. Benchmarks to evaluate distribution shifts

2. Model to address domain shift

3. Model to address spurious correlation

4. Zero-shot inference with foundation model (e.g., ChatGPT)
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Benchmark

25Li, Da, et al. "Deeper, broader and artier domain generalization." ICCV 2017.
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26Koh, Pang Wei, et al. "Wilds: A benchmark of in-the-wild distribution shifts." ICML 2021.
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30Koh, Pang Wei, et al. "Wilds: A benchmark of in-the-wild distribution shifts." ICML 2021.
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Data Augmentation

“Let’s help the model become more familiar with a wider variety of data”
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Approaches for Domain Shifts

Model-based Data Augmentation

33Gatys, Leon A., et al.  "Image style transfer using convolutional neural networks." CVPR 2016.
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Model-based Data Augmentation

34Wang, Zijian, et al. "Learning to diversify for single domain generalization." ICCV 2021.

 

 

 

  



Approaches for Domain Shifts

Domain Adversarial Neural Network

35Ganin, Yaroslav, et al. "Domain-adversarial training of neural networks." JMLR 2016.



Approaches for Spurious Correlations

Learning not to Learn

36Kim, Byungju, et al. "Learning not to learn: Training deep neural networks with biased data." CVPR 2019.
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Unbiasing Network

37Jeon, Myeongho, et al. "A conservative approach for unbiased learning on unknown biases." CVPR 2022.



Approaches for Spurious Correlations

Weighted Resampling

“Let's assign higher weights to underrepresented data during training”
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Seo, Seonguk, et. al., "Unsupervised learning of debiased representations with pseudo-attributes." CVPR 2022.



Approaches for Distribution Shifts

“Let's use a foundation model that has been trained on a large amount of data!”
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Approaches for Distribution Shifts

Zero-shot Inference with Foundation Model
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What object is in 
this image?

Choices:
- A cat
- A dog

“A Cat”
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Zero-shot Inference with Foundation Model

41Radford, Alec, et al. "Learning transferable visual models from natural language supervision." ICML 2021.
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Comparison of approaches
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Approaches for Distribution Shifts

1. Simple data augmentation is more effective than state-of-the-art models.
2. Zero-shot inference with foundation model is very effective.

43Jeon et al. "An Analysis of Model Robustness across Concurrent Distribution Shifts." TMLR 2025.



Approaches for Distribution Shifts

Distribution shifts in foundation model
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