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Background: Data Marketplaces

Typical data marketplace:

X
X
I

R%
-

data
marketplace —

Hs\\‘“ %

Al
A

no data protection!

AloTwin



Background: Data Marketplaces

Our goal:
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Privacy-Preserving Computation Techniques

« Secure Multi-Party Computation
 Fully-Homomorphic Encryption
 Trusted Execution Environments

« Differential Privacy
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Scenario

“Typical” Federated Learning scenario

* Training a model on sensitive data from different data
providers (sensors, users, hospitals, banks, ...)

« Same applies to any ML/statistics/data aggregation

Communications must reveal local
Information!

Objective: prevent unauthorized usage
of the data
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Types of Privacy Leakage

* Training-time Leaks

e Inference-time Leaks
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Training-Time Leaks

Training data features can be
reversed-engineered from gradients

By:
 Third-party interception
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Training-Time Leaks

Training data features can be
reverse-engineered from gradients

By:
+ Third-party-trterception USE ENCRYPTION!

« Malicious participants x* _ e' e.
« Compromised participants '
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Inference-Time Leaks

 Training data features can be
reverse-engineered from model weights
By participants

« By anyone else with whom
the model is shared

 Training data features can be
reverse-engineered from model I/O

* By any user of the model
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Privacy-Preserving Computation Techniques

Training-Time Inference-Time
Leakage Leakage
0. Encryption!!! v’
1. Secure Multi-Party Computation v
2. Fully-Homomorphic Encryption v
3. Trusted Execution Environments 4
4. Differential Privacy v v
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Secure Multi-Party Computation (SMC/MPC)

* Broad family of techniques
* Peer-to-peer
* Online, interactive

* Basic concept:

* N players, each with their own datapoint x; compute a function
f (x4, ..., xy) Via peer-to-peer communications, without revealing
any of the x;

« Example time!
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SMC: Secret Sharing

Most used approach for Secure Multi-Party Computation

* The secret is used to decode information in SMC
« Each of the N players owns a unigue share of the secret

e Atleast1 <t < Nshares are needed
to decode the information

« Can withstand up to t — 1 colluding players /\

» Can withstand up to N — t dropouts / \ J
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SMC: Pros/Cons

Pros:

» Peer-to-peer, designed for multiple players
» Simple to understand

» Acceptable overheads

cons:

* Online, Interactive

» Secure secret construction is hard
* Algorithm-specific
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Fully-Homomorphic Encryption (FHE)

« Homomorphic encryption: a family of encryption schemes that
supports certain operations on cyphertexts

f(x) = dec(f(enc(x)))

* Fully-nomomorphic encryption: support for arbitrary sequences of
operations
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Fully-Homomorphic Encryption (FHE)

* High overheads
« Large noise-tolerant encrypted representation
« Each simple operation adds noise — payload must be decrypted every few steps
* Treat decryption as an encrypted operation — unlimited steps hack!

* Not originally designed for FL
* Mostly designed for client/server scenarios
« Can be useful for privacy-preserving inference
« Sometimes used as a component within SMC
« Extensions for multiple clients do exist
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FHE: Pros/Cons

Pros:
« Simple to use, hard to get wrong
* Algorithm-agnostic

cons:
* Mostly designed for 2 players
* Huge overheads
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Trusted Execution Environments (TEES)
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Trusted Execution Environments (TEES)

* Built-in support in most CPUs (Intel SGX, Arm TrustZone, ...)
 Kinda notorious for security issues

* Not automatically immune from side-channel attacks

* Recently: GPU TEEs for secure accelerated computing
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TEES: Pros/Cons

Pros:

» Conceptually simple

* Broadly applicable
 Hardware acceleration

cons:

* Need to trust hardware manufacturer
* Tricky to defend against side channels
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(Partial) Comparison

scales well with

Environments

scales well with Is hardware- |is non-
number of nodes | problem complexity |agnostic Interactive
Secure Multi-Party Vv v Vv x
Computation
Fully-Homomorphic v x Vv v
Encryption
Trusted Execution vv vv x vv
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Differential Privacy (DP)

Original goal: limit queries on sensitive data
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Solution: add noise to hide the information

“Privacy budget” decreases with every overlapping query!

AloTwin



Differential Privacy: Noise Scaling
Q(D) = Q(D) + noise

(,6)-DP:
Pr(Q(D) € 0) <e®Pr(Q(D')E0)+686 VD,D

Where D, D’ are any two adjacent datasets (i.e. that differ in one
single entry)

* The bigger the potential difference made by a single entry, the bigger
the noise scale

* The more queries needed, the bigger the noise
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DP In FL: Two Levels

* Device-level DP
* “Anonymizes” individual datapoints in each device
* Does not “anonymize” the participating devices
« Useful for e.g. hospital datasets (one row per patient)
* No need to trust the aggregator

* Aggregator-level DP
* “Anonymizes” whole participating devices
« Useful for e.g. smart devices (one device per user)
* Need to trust the aggregator
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DP: Pros/Cons

Pros:
* Do you even have a choice?
« Strong mathematical guarantees

cons:
* Noise vs utility tradeoff
 Limited number of queries
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Conclusion

« 4 key technigues for privacy-preserving computing
« Secure Multi-Party Computation
 Fully-Homomorphic Encryption
» Trusted Execution Environments
« Differential Privacy

* No one-size-fits-all
« Must consider pros/cons in the context of a specific application

* Encrypt and authenticate everything end-to-end!
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Tomorrow’'s Hands-on:
ColonyOS

Necessary preparatory steps
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Preparation (1/2): Download requirements

* Install docker and docker-compose on your machine:
* Linux: use your distribution’s package manager
« Windows/Mac: we suggest using Docker Desktop (free for non-commercial use)

* Download the ColonyOS files:
 The environment variables file:

 Windows: https://raw.githubusercontent.com/colonyos/colonies/main/windowsenv.bat

e LiNnuX: https://raw.githubusercontent.com/colonyos/colonies/main/docker-compose.env

* The docker-compose file:
https://raw.githubusercontent.com/colonyos/colonies/main/docker-compose.yml

« The ColonyOS CLlI tool:

 Binaries for all platforms: https://github.com/colonyos/colonies/releases

27/09/2024 AloTwin 27


https://raw.githubusercontent.com/colonyos/colonies/main/windowsenv.bat
https://raw.githubusercontent.com/colonyos/colonies/main/docker-compose.env
https://raw.githubusercontent.com/colonyos/colonies/main/docker-compose.yml
https://github.com/colonyos/colonies/releases

Preparation (2/2):. Test Everything

« Before any other step, always set the environment variables

* Windows: windowsenv.bat
* Linux: source docker-compose.env

* On one terminal, start the virtual ColonyOS environment

« Set the environment variables (as described above)
 Run docker-compose up (or docker compose up depending on version)

« On another terminal, connect to the ColonyOS environment using the CLI tool
« Set the environment variables (as described above)
 Run colonies executor 1s
« Expected output: | :

| NAME | TYPE | LOCATION | LAST HEARD FROM |

R e

| dev-docker | container-executor | n/a | 2024-06-29 13:37:27 |
L )

 To shutdown the virtual ColonyOS environment:
- docker-compose down (or docker compose down depending on version)
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These slides

https://github.com/colonyos/tutorials

o o
Ve

@i

ColonyOS setup/tutorial
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https://github.com/colonyos/tutorials
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