

Privacy-Preserving Computation Techniques for Edge AI

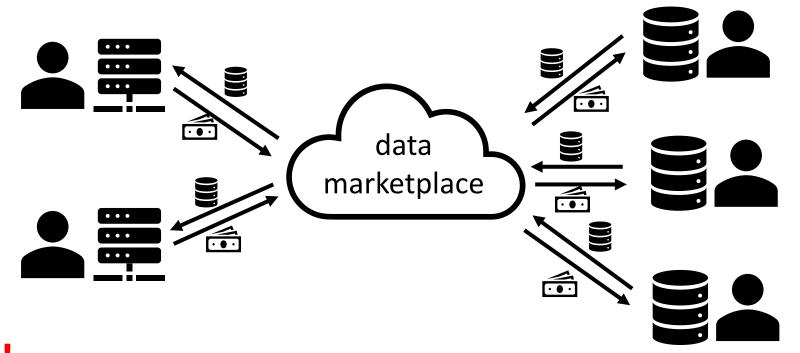
Lodovico Giaretta (RISE) - lodovico.giaretta@ri.se

2nd AloTwin Summer School – 16-18.09.2024, Dubrovnik, Croatia

Funded by the European Union

Background: Data Marketplaces

Typical data marketplace:



no data protection!

Background: Data Marketplaces Our goal: • • • • • • ••• data marketplace • • • **| | | |**, • • • • • •

Privacy-Preserving Computation Techniques

- Secure Multi-Party Computation
- Fully-Homomorphic Encryption
- Trusted Execution Environments
- Differential Privacy

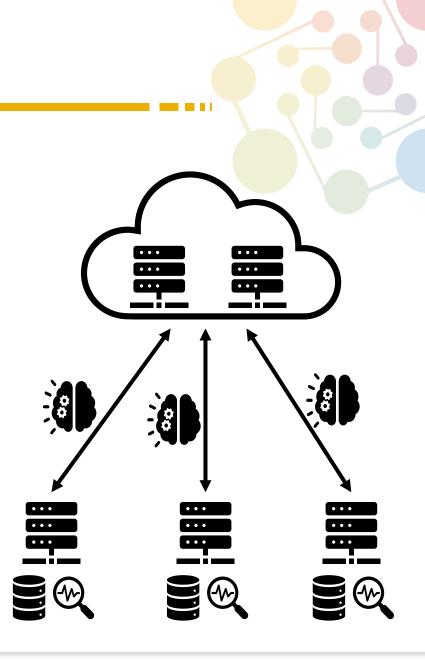
Scenario

"Typical" Federated Learning scenario

- Training a model on sensitive data from different data providers (sensors, users, hospitals, banks, ...)
- Same applies to any ML/statistics/data aggregation

Communications must reveal local information!

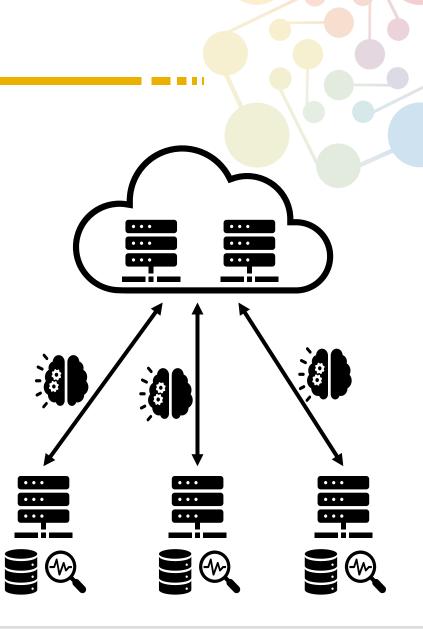
Objective: prevent unauthorized usage of the data



Types of Privacy Leakage

• Training-time Leaks

Inference-time Leaks



Training-Time Leaks

Training data features can be reversed-engineered from gradients

By:

• Third-party interception

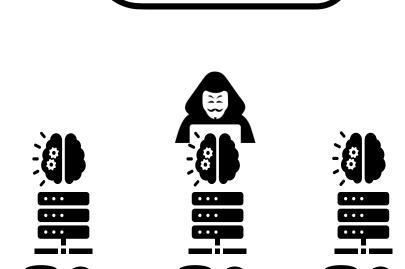
Training-Time Leaks

Training data features can be reverse-engineered from gradients

- By:
 Third-party interception USE ENCRYPTION!
- Malicious participants
- Compromised participants

Inference-Time Leaks

- Training data features can be reverse-engineered from model weights
 - By participants
 - By anyone else with whom the model is shared
- Training data features can be reverse-engineered from model I/O
 - By any user of the model



(~~)

Privacy-Preserving Computation Techniques

	Training-Time Leakage	Inference-Time Leakage
0. Encryption!!!	✓*	
1. Secure Multi-Party Computation	\checkmark	
2. Fully-Homomorphic Encryption	\checkmark	
3. Trusted Execution Environments	\checkmark	
4. Differential Privacy	✓**	✓**

Secure Multi-Party Computation (SMC/MPC)

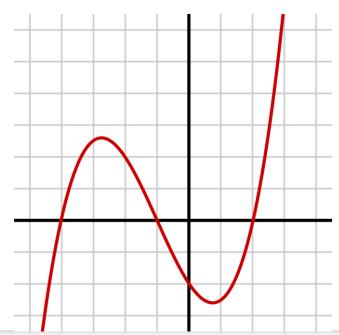
- Broad family of techniques
 - Peer-to-peer
 - Online, interactive
- Basic concept:
 - N players, each with their own datapoint x_i compute a function $f(x_1, ..., x_N)$ via peer-to-peer communications, without revealing any of the x_i
- Example time!

27/09/2024

SMC: Secret Sharing

Most used approach for Secure Multi-Party Computation

- The secret is used to decode information in SMC
- Each of the N players owns a unique share of the secret
- At least $1 \le t \le N$ shares are needed to decode the information
- Can withstand up to t 1 colluding players
- Can withstand up to N t dropouts



SMC: Pros/Cons

Pros:

- Peer-to-peer, designed for multiple players
- Simple to understand
- Acceptable overheads

Cons:

- Online, interactive
- Secure secret construction is hard
- Algorithm-specific

Fully-Homomorphic Encryption (FHE)

 Homomorphic encryption: a family of encryption schemes that supports certain operations on cyphertexts

f(x) = dec(f(enc(x)))

• Fully-homomorphic encryption: support for arbitrary sequences of operations

$$enc(x)$$

$$f(enc(x))$$

Fully-Homomorphic Encryption (FHE)

High overheads

- Large noise-tolerant encrypted representation
- Each simple operation adds noise \rightarrow payload must be decrypted every few steps
- Treat decryption as an encrypted operation \rightarrow unlimited steps hack!
- Not originally designed for FL
 - Mostly designed for client/server scenarios
 - Can be useful for privacy-preserving inference
 - Sometimes used as a component within SMC
 - Extensions for multiple clients do exist

FHE: Pros/Cons

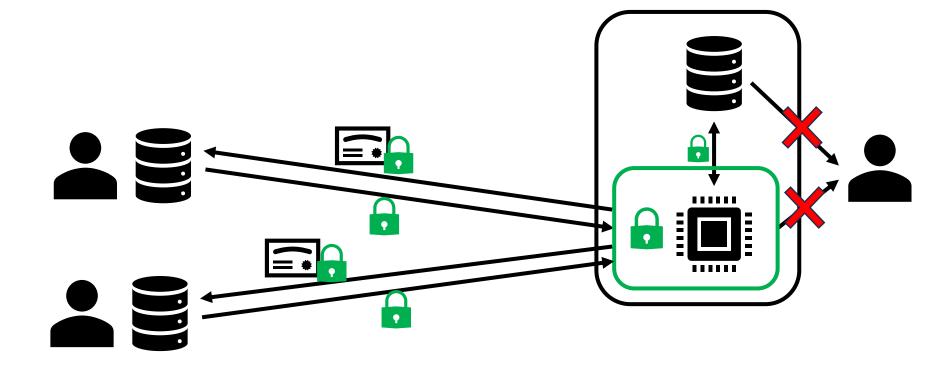
Pros:

- Simple to use, hard to get wrong
- Algorithm-agnostic

Cons:

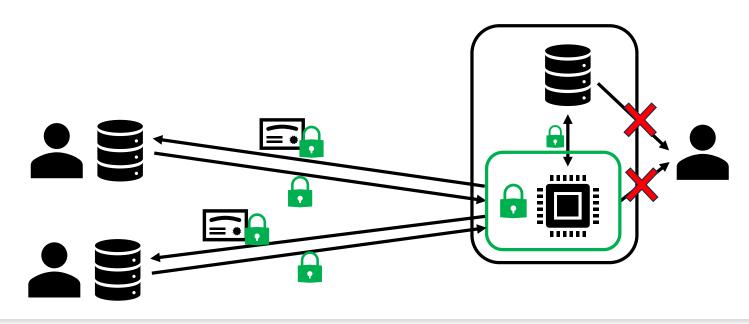
- Mostly designed for 2 players
- Huge overheads

Trusted Execution Environments (TEEs)



Trusted Execution Environments (TEEs)

- Built-in support in most CPUs (Intel SGX, Arm TrustZone, ...)
- Kinda notorious for security issues
- Not automatically immune from side-channel attacks
- Recently: GPU TEEs for secure accelerated computing



TEEs: Pros/Cons

Pros:

- Conceptually simple
- Broadly applicable
- Hardware acceleration

Cons:

- Need to trust hardware manufacturer
- Tricky to defend against side channels

(Partial) Comparison

	scales well with number of nodes	scales well with problem complexity	is hardware- agnostic	is non- interactive
Secure Multi-Party Computation	$\checkmark\checkmark$	\checkmark	$\checkmark \checkmark$	×
Fully-Homomorphic Encryption	✓	×	$\checkmark \checkmark$	$\checkmark\checkmark$
Trusted Execution Environments	\checkmark	$\checkmark \checkmark$	×	$\checkmark\checkmark$

Differential Privacy (DP) **Original goal: limit queries on sensitive data** select avg(*) where ... x + Lap(0, b)

Solution: add noise to hide the information

"Privacy budget" decreases with every overlapping query!

Differential Privacy: Noise Scaling

$$\tilde{Q}(D) = Q(D) + noise$$

 (ε, δ) -DP:

$$\Pr(\tilde{Q}(D) \in O) \le e^{\varepsilon} \Pr(\tilde{Q}(D') \in O) + \delta \quad \forall D, D'$$

Where *D*, *D*' are **any two adjacent datasets** (i.e. that differ in one single entry)

- The bigger the potential difference made by a single entry, the bigger the noise scale
- The more queries needed, the bigger the noise

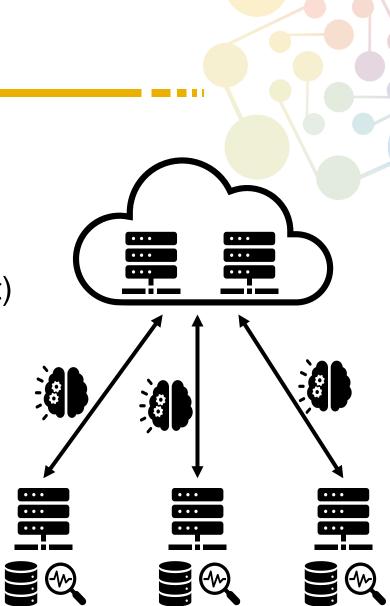
DP in FL: Two Levels

Device-level DP

- "Anonymizes" individual datapoints in each device
- Does not "anonymize" the participating devices
- Useful for e.g. hospital datasets (one row per patient)
- No need to trust the aggregator

Aggregator-level DP

- "Anonymizes" whole participating devices
- Useful for e.g. smart devices (one device per user)
- Need to trust the aggregator



DP: Pros/Cons

Pros:

- Do you even have a choice?
- Strong mathematical guarantees

Cons:

- Noise vs utility tradeoff
- Limited number of queries

Conclusion

4 key techniques for privacy-preserving computing

- Secure Multi-Party Computation
- Fully-Homomorphic Encryption
- Trusted Execution Environments
- Differential Privacy

No one-size-fits-all

• Must consider pros/cons in the context of a specific application

• Encrypt and authenticate everything end-to-end!

Tomorrow's Hands-on: ColonyOS

Necessary preparatory steps

Preparation (1/2): Download requirements

- Install docker and docker-compose on your machine:
 - Linux: use your distribution's package manager
 - Windows/Mac: we suggest using Docker Desktop (free for non-commercial use)
- Download the ColonyOS files:
 - The environment variables file:
 - Windows: https://raw.githubusercontent.com/colonyos/colonies/main/windowsenv.bat
 - Linux: https://raw.githubusercontent.com/colonyos/colonies/main/docker-compose.env
 - The docker-compose file: https://raw.githubusercontent.com/colonyos/colonies/main/docker-compose.yml
 - The ColonyOS CLI tool:
 - Binaries for all platforms: https://github.com/colonyos/colonies/releases

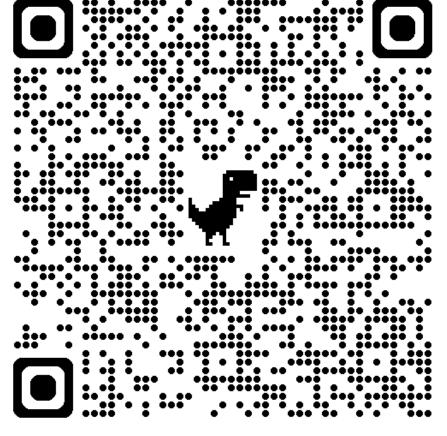
Preparation (2/2): Test Everything

- Before any other step, always set the environment variables
 - Windows: windowsenv.bat
 - Linux: source docker-compose.env
- On one terminal, start the virtual ColonyOS environment
 - Set the environment variables (as described above)
 - Run docker-compose up (or docker compose up depending on version)
- On another terminal, connect to the ColonyOS environment using the CLI tool
 - Set the environment variables (as described above)
 - Run colonies executor ls
 - Expected output:

NAME	ТҮРЕ	LOCATION	LAST HEARD FROM
dev-docker	container-executor	n/a	2024-06-29 13:37:27

- To shutdown the virtual ColonyOS environment:
 - docker-compose down (or docker compose down depending on version)

Links



These slides

ColonyOS setup/tutorial https://github.com/colonyos/tutorials