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Edge-Cloud Continuum in a Nutshell

< continuum

/ken'tinjuam/

noun

a continuous sequence in which adjacent elements are not perceptibly different from each other, but
the extremes are quite distinct.
"a continuum of special educational needs"”

» A large pool of interconnected resources

» Usually hierarchical/layered and globally
heterogeneous
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The Promises of Serverless
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No infrastructure management Flexible elastic scaling
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High reliability & availability No idle capacity




Serverless Computing in a Nutshell

Infrastructure as a Containers as a Function as a Service
Serverless # No Servers Service (laas) Service (Caa$) (Faa$)

Function

Natural evolution in Cloud
Computing

Function Function

Application Application Application

Runtime Runtime

Runtime

Novel Function as a Service (Faas)
Paradigm

Container Container

Container
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Novel execution model

Virtualisation Virtualisation

Virtualisation

Hardware Hardware

Hardware

User Managed Service Provider

Managed




Function Isolation and Virtualization
Models

Containers (K-Native on Kubernetes )
MicroVMs - Firecracker (AWS Lambda)
V8 Isolates (Cloudflare, Deno Deploy)
WASM runtime (Fastly)

Unikernels (Mainly academia)
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Function as a Service (Faas$)

» A type of serverless computing where AWS Account
developers can deploy and run code in
response to events or requests i
» Application is decomposed into *) ))))1)) ]“' : :
“tfriggers” and “actions” (functions) @ — e ;;e;;t;h'
— AWS Lambda . Role
Developers write functions and upload m ~ 2 r
them to a FaasS platform "= : v ; 4

.‘"""'-i—ln—l—'-"""I _J o)
Functions are triggered by events, such as ' ' O § |imb
a user request or a change in data

&
Source Target _\j Lambda

Bucket Bucket Function

» Example: Thumbnail image processing



Popular Serverless Plattorms

» Cloud-First

AWS Lambda

Azure Functions

Google Cloud Functions
» Edge-First

Cloudflare Workers

Fastly Compute@Edge
» Open source

OpenWhisk

OpenFass




Serverless Beyond the Faas

Serverless “support Baas services”

» APl Gateways for synchronous
(request-based) communication

» Object stores for persistent state
management

» Database change streams for
reacting to data changes (DynamoDB
Streams)

» Function orchestration (Step Function)

T. Larcher, P. Gritsch, S. Nastic and S. Ristov, "BAASLESS: Backend-
as-a-Service (BaaS)-Enabled Workflows in Federated Serverless
Infrastructures,” in IEEE Transactions on Cloud Computing

Serverless managed Cloud
services

» Serverless relational database (Amazon
Aurora)

» Serverless container management (AWS
Fargate)

» Serverless warehouse (Google BigQuery)




Serverless Beyond the Cloud

» Serverless was born in the Cloud and
remains largely limited to the Cloud

» True potential of Serverless is unlocked
in the Edge-Cloud confinuum

Localized computation (Edge locations
vs datacenters)

Low network latency due to proximity
to the user

Flexible geo-restrictions, compliance,
etc.

Nastic, S., Dustdar, S., Philipp, R., Alireza, F., & Pusztai, T. (2022). A Serverless Computing Fabric for
Edge & Cloud. In 4th IEEE International Conference on Cognitive Machine Intelligence (CogMi).

Serverless Compute Fabric

» Edge-Cloud native Baas services

» Distributed and decentralized
messaging solutions (Emma)

» Lightweight and secure virtualization
and isolation (WASM)

» Edge-native state management
(Durable Objects)




The Promises of Serverless
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Many Opportunifies ...

» Fine-grained pay-per-use model with » Effortlessly parallelizing
preserved SLOs computing

» Opftimal resource usage with Scale-to- > Exfremely bursty workloads
Zero » CUP-bound applications

» Rapid elasticity & auto-scaling due o » Developing scalable Edge-
lightweight virtualization native solution

» Nafive cloud offloading » True event-driven applications

» True utility-based resource consumption >

» Disaggregation of compute and storage

» Stateless workflows and life-cycle



Serverless Horror Stories

Examples from the Wild: A runaway function

» Whatis a runaway
function?

» There are no default
safeguards in place to
prevent runaway functions

Tom

Beware “RunOnStartup”’ in Azure
Functions — a serverless horror story

AWS Lambda bill

The curious case of the spiralling

. But sometimes costs go wrong.
ch situation - ever increasing costs,

Liled to execute once per hour!

We Burnt $72K testing Google Cloud
N Summary for Mar 1, 2020-Mar 31, 2020
Firebase + Cloud Run and
Starting balance as of Mar 1, 2020 $0.00
almost went Bankrupt Totalnew actiy 71393 86
Total payments received $0.00
[Part 1]
Ending balance in USD $71,393.86
e Sudeep Chauhan
é About me
Dec 08, 2020 - 9 mins read
Share this! “ his is the story of how close we came to shutting down before even launching
; our first product, how we survived, and the lessons we learnt.

80000

In March, 2020, when COVID hit the world, our startup Milkie Way too was hit with a big blow
and almost shut down. We burnt $72,000 while exploring and internally testing Cloud

Run with Firebase within a few hours.




Serverless Horror Stories

Examples from the Wild: A service misconfiguration

» Serverless functions don't live

in isolation (“support
services”)

» Serverless says nothing about

configuring & managing
other edge-cloud services

Arguably more complex
ecosystem

Serverless: 15% slower and 8x more expensive
Posted: 2019-09-18 Last updated: 2019-09-26

ping the API we have at CardGames.1o and try using
'verless has been a hot topic in the tech world for the

shimating wantoad tn lreen myr tech claille 111 tn date

’_:—} éégment Product Pricing Customers Docs Company

Popular Podcasts Growth & Marketing Engineering Company

Lessons learned from combining
SQS and Lambda in a data project

In June 2018, AWS Lambda added Amazon Simple Queue Service (SQS) to
supported event sources, removing a lot of heavy lifting of running a polling

service or creating extra SQS to SNS mappings. In arecent project we utilized
this functionality and configured our data pipelines to use AWS Lambda

functions for pr ing the ii ing data items and SQS queues for buffering
them. The built-in functionality of SQS and Lambda provided us serverless,
scalable and fault-tolerant basis, but while running the solution we also learned
some important lessons. In this blog post | will discuss the issue of valid

messages ending up in dead-letter queues (DLQ) and correctly configuring you
DLQ to catch only erroneous messages from your source SQS queue.

The million dollar engineering
problem

Achille Roussel, Rick Branson on March 14th 2017

For an early startup, using the cloud isn’t even a question these days. No RFPs,
provisioning orders, or physical shipments of servers. Just the promise of getting up
and running on “infinitely scalable” compute power within minutes.

But, the ability to provision thousands of dollars worth of infrastructure with a single
APl call comes with a very large hidden cost. And it's something you won't find on
any pricing page.




Main Challenges with Serverless in

Edge-Cloud Contfinuum

Performance Challenges Data Management Challenges

» Starfup/scheduling latency (“cold » Function execution latency due to
start”) lack of data locality

» Lack of performance isolation (*noisy » State management for stateful
neighbors”) computations

» |nconsistent performance due to » Efficient and cost-effective caching
hardware heterogeneity (also present solutions

: —
in Cloud only solutions!) » Particularly important for emerging

Edge Al workloads

Nastic, S., Dustdar, S., Philipp, R., Alireza, F., & Pusztai, T. (2022). A Serverless Computing Fabric for
Edge & Cloud. In 4th IEEE International Conference on Cognitive Machine Intelligence (CogMi).



Main Challenges with Serverless in

Edge-Cloud Contfinuum

Reliability Engineering Challenges

» Dealing with function failures beyond
simple retries

» Network partitioning can render functions
useless (detached storage)

» SLO-aware provisioning of functions
(lbeyond memory and CPU)

» Inferoperability and portability of functions

Software Development Challenges

» A misconfiguration of services and
resources

» Bad coding practices

» Wrong or incomplete error handling
mechanism

» Testing of the functions, beyond the
unit tests

» Resource quotas & limits

Nastic, S., Dustdar, S., Philipp, R., Alirezaq, F., & Pusztai, T. (2022). A Serverless Computing Fabric for Edge

& Cloud. In 4th IEEE International Conference on Cognitive Machine Intelligence (CogMi).




Project Polaris

» Enabling SLO- and reliability- awareness
in the Edge-Cloud

» Evolved into an ecosystem of tools and
framework for the serverless Edge-Cloud
continuum

» Polarisis hosted by Linux Foundation as @
SIG of a broader Project Centaurus

» Very active GitHub:
https://github.com/polaris-slo-cloud

Nastic, S., Morichetta, A., Pusztai, T., Dustdar, S., Ding, X., Vij, D. and Xiong, Y., 2020. SLOC: Service level
objectives for next-generation cloud computing. IEEE Internet Computing, 24(3), pp.39-50.

L]

FUTUREWEI

Technologies

IntelliEdge

LINUX

FOUNDATION




Polaris SLO Framework
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SLO Script

Monitoring
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Pusztai, T., Morichetta, A., Pujol, V.C., Dustdar, S., Nastic, S., Ding, X., Vij, D. and Xiong, Y., 2021, September. SLO script: A novel language for
implementing complex cloud-native elasticity-driven SLOs. In 2021 IEEE International Conference on Web Services (ICWS) (pp. 21-31).



SLO Controllers

» Developed as Monitoring, SLO, and
Scaling Controllers

» Reference implementation extends
Kubernetes

» Orchestrator/platform independent
control loop

Pusztai, T., Morichetta, A., Pujol, V.C., Dustdar, S., Nastic, S., Ding, X., Vij, D. and Xiong, Y., 2021, September.
A novel middleware for efficiently implementing complex cloud-native SLOs. In 2021 IEEE 14th International
Conference on Cloud Computing (CLOUD) (pp. 410-420).
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Predictive Monitoring Contirollers
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Workspace
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Tooling demo video on YouTube: hitps://www.youtube.com/watch?v=JVZI4hB2AMGs



Polaris Scheduler for Edge-Cloud

Continuum

» Plugins-based, Edge-sensitive, and SLO-aware scheduling framework for Edge-Cloud Confinuum

Latency and bandwidth
variance values are used
to assess the QoS
requirements (stability of
the network connections)

Scheduler’s
Plugins

rviceGraph
etworkQoS
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Nastic, S., Pusztai, T., Morichetta, A., Casamayor Pujol, V., Dustdar, S., Vii, D., & Xiong, Y. (2021). Polaris scheduler: Edge sensitive and slo aware
workload scheduling in cloud-edge-iot clusters. In IEEE 14th International Conference on Cloud Computing (CLOUD) (pp. 206-216).



Dealing with the Scale of the Edge-

Cloud Continuum

Sampling Phase Decision Phase Commit Phase

ﬂela

Scheduler

O

Job

MultiBind Mechanism

» The Edge-Cloud Continuum
is very large in scale

1 Node (cluster A)

Sampler Pool —

(=1
Pipeline . » We need to work with a

e Q | | Bl sample of the infrastructure
Filtering & Scoring | @ ® | .. : ﬂOdeS

Queue
Plugins

Sampling
Queue

Try committing

» We infroduced a 3-phase
distributed scheduler

h 4

A 4

S <

Vela Cluster Agent A Vela Cluster Agent A
Sampling >
Pipeline ‘( Commit
) Pipeline

Filtering & ]
Scoring Commit
Plugins Nodes Plugins
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Pusztai, T., Nastic, S., Casamayor Pujol, V., Raith, P., Dustdar, S.,
Vij, D., & Xiong, Y. (2023). Vela: A 3-Phase Distributed Scheduler
for the Edge-Cloud Continuum. In The 11th IEEE International
Conference on Cloud Engineering (IC2E 2023)




Scheduler Global Scalability Results

Scalability with Respect to Infrastructure
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Fig. 2: Mean Scheduling Times (ms) at "percentageOfClustersToSample’ = 50% and
‘nodesToSampleBp" = 4% for Total Nodes.
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Milliseconds

Scheduler Global Scalability Results

Scalability with Respect to Workload Throughput
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Fig. 8: Mean Sampling and E2E-no-queue Times (ms) with Respect to Throughput.
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Average Max Latency (ms)

Scheduler SLO Compliance Results
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Pusztai, T., Nastic, S., Morichetta, A., Casamayor Pujol, V., Raith, P., Dustdar, S., ... Zhang, Z. (2022). Polaris Scheduler: SLO- and Topology-aware
Microservices Scheduling at the Edge.




Address the SLO and
scheduling booftstrapping
problem

Main idea: use apriori
available meta data to profile
workloads

» Profile generation based on
dynamic data

» Profile classification based on
static metadata

Main insight: We can learn a
lot about the future workload
by looking at its metadata

e.g.. XGBoost

| Profile

classifier

apped by ML

—Mapped by ML—>

—Mapped by ML
—>

CPU usage:
max 99, std 24,
avg ...
Memory usage:
max 32, std 5,
avg ...

Profile
generator

PolarisProfiler

e.g., HDBSCAN



Predicting job duration

» 1000 proportionally-sampled
jobs not used for training

» Use avg duration in each
profile as prediction

> RMSE, below 5% for more
than 80% of the profiled jobs

Profiles

— ek b —h
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Morichetta, A., Casamayor Pujol, V., Nastic, S., Dustdar, S., Vij, D., Xiong, Y., & Zhang, Z. (2023). PolarisProfiler: A Novel
Metadata-Based Profiling Approach for Optimizing Resource Management in the Edge-Cloud Continnum. In The 18th IEEE

International Symposium on Service-Oriented System Engineering (SOSE 2023).
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Work In progress

Intelligent sampling in @ Using cold starts to Optimal function
heterogeneous Improve data fransfers invocation for WASM-
infrastructure between functions based Faas
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Conclusion

» Main promises of serverless computing
» Main concepts of serverless computing paradigm
» FaaS - Function as a Service
» BaaS -Backend as a Service
» Function virtualization and isolation approaches
» Serverless = FaaS + Baas
» Project Polaris — towards serverless computing fabric for the edge-cloud continuum
» SLO managements
» Scheduling
» Profiling



Thank you for your attention!

» Find me at: www.nastic.at

» Drop me an email: snastic@dsg.tuwien.ac.at
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