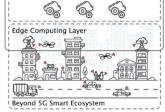

Sustainable & Trustworthy Edge Al for Future Computing

Aaron Ding

Director of CPI Lab, TU Delft

Complex Subject



CPI on Edge AI

- SPATIAL of €5M grant
- APROPOS of €4M grant

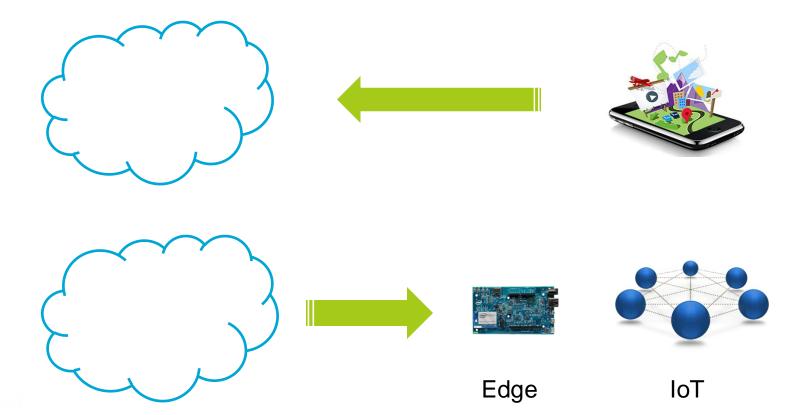
Trustworthy Edge Al

Score: 98/100 | Rate: 8%

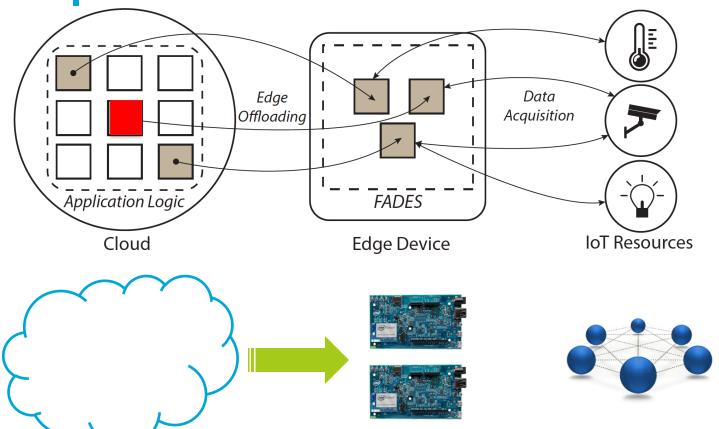
Sustainable Edge Al

Score: 14.5/15 | Rate: 3%

Is Edge AI a Real Thing?


Edge AI is Real

Provider	Hardware	
Google	Tensor Processing Units (TPU)	
Intel	Movidius Vision Processing Units (VPUs) & Xeon D-2100	
Qualcomm	Qualcomm Snapdragon 8 Series, Hexagon DSP	
Huawei	Ascend Series & Kirin 600/900 NPU	
Samsung	Exynos 9820 Neural Processing Unit (NPU)	
NVIDIA	TURING GPU	


Provider	Dev Platform			
Microsoft	Azure Data Box Edge			
Intel	Movidius Neural Compute Stick			
NVIDIA	Jetson Nano, TX, Xavier NX			
Huawei	Atlas AI Computing Platform			
Provider	Management Framework			
Microsoft	Azure IoT Edge			
Google	Google Cloud IoT			
NVIDIA	NVIDIA EGX			
Amazon	AWS IoT Greengrass			
Alibaba	Link loT Edge			
Linux Found.	EdgeX & Akraino Edge Stack			
Huawei	KubeEdge			

What exactly is Edge AI?

Edge Paradigm

Example

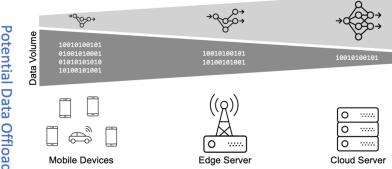
Decentralization of Degree

Continuum Perspective

Level 6: On-device Training & Inference

Level 5: Edge Training & Edge Inference

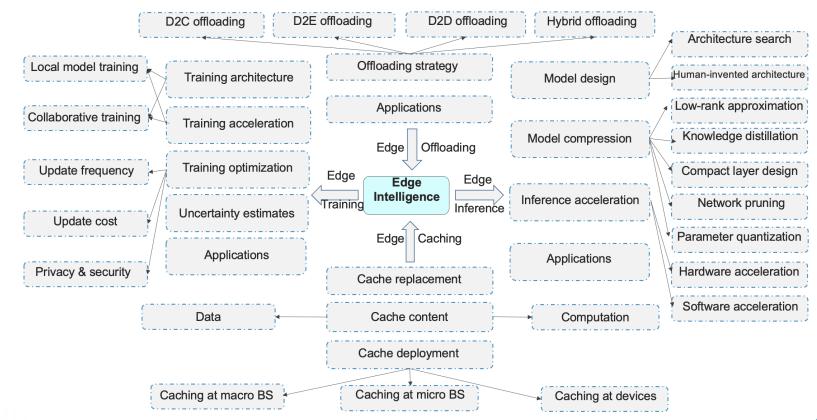
Level 4: Cloud-Edge Co-training & Co-Inference

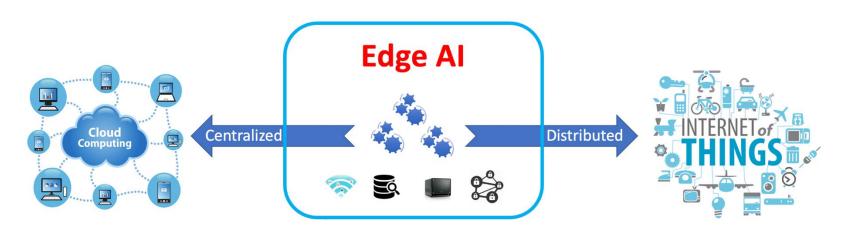

Level 3: Cloud Training & On-device Inference

Level 2: Cloud Training & Edge Inference

Level 1: Cloud Training & Cloud-Edge Co-inference

Level 0: Fully Cloud Training & Inference


Potential Data Offloaded to Cloud


Enabling Techniques

FUDelft

Motivation

Bridge the Gap

Consolidate Cloud & IoT

ruDelft

Case: Crowd Intelligence on Edge

- Societal impact of past years
 - Responding and coping with emergency/pandemics
 - Urban activity/mobility sensing on the edge

Motivation

- Low cost and scalable
 - User equipment
 - Deployment and coverage

Gap: high fidelity entails high cost, infrastructure dependency, privacy intervention

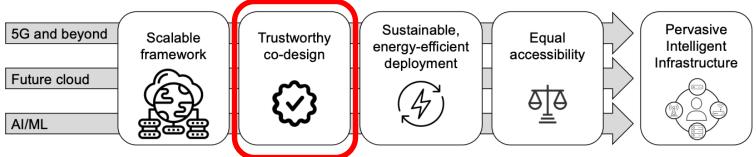
- Passive (non-intrusive)
 - No need to force user interactions nor mandatory engagement
- Privacy-aware/friendly
 - Balance fidelity and data (local) regulations

Unexpected

- Project ends...
 - Regulatory and legal considerations
 - Privacy in local context

FUDelft

Lessons

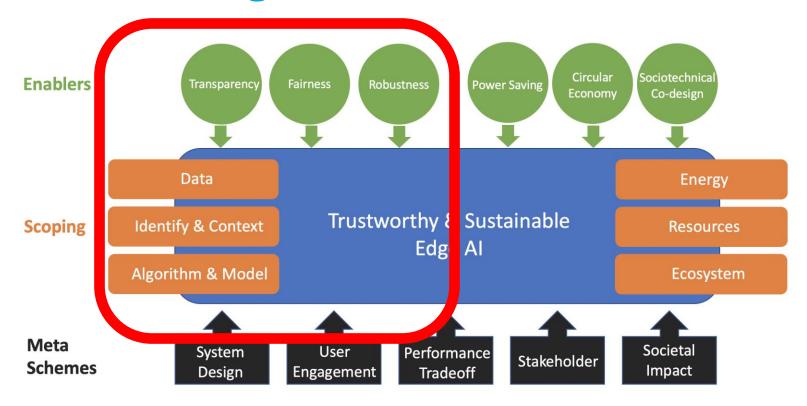

- Boundary + Awareness
 - Privacy on Edge? regulations and legal
 - Difference across countries

Where is my Tag? Unveiling Alternative Uses of Apple FindMy Service

"Learn from the mistakes of others. You can't live long enough to make them all yourself." - Eleanor Roosevelt

Roadmap for Edge Al: A Dagstuhl Perspective

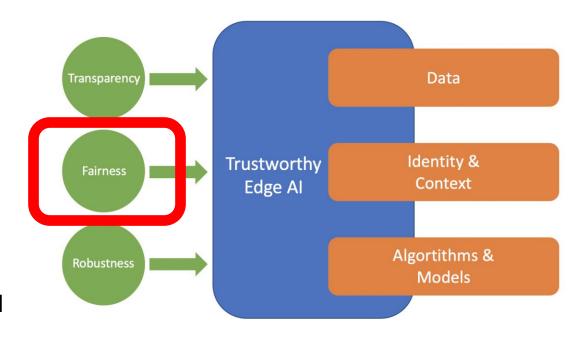
Aaron Yi Ding^{1*}, Ella Peltonen², Tobias Meuser³, Atakan Aral⁴, Christian Becker⁵, Schahram Dustdar⁶, Thomas Hiessl⁶, Dieter Kranzlmüller⁷, Madhusanka Liyanage⁸, Setareh Magshudi⁹, Nitinder Mohan¹⁰, Jörg Ott¹⁰, Jan S. Rellermeyer^{11,1}, Stefan Schulte¹², Henning Schulzrinne¹³, Gürkan Solmaz¹⁴, Sasu Tarkoma¹⁵, Blesson Varghese¹⁶, Lars Wolf¹⁷



TUDelft

COMPUTER COMMUNICATION REVIEW

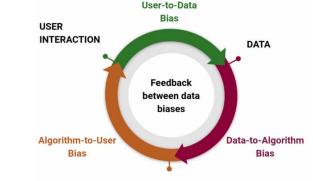
Research Agenda



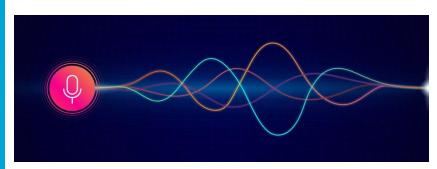
Targets

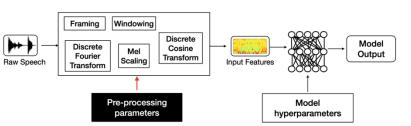
- Enabler
- Transparency
- Fairness
- Robustness
- Scope

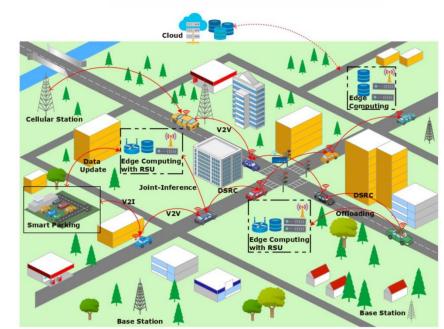
- Data
- Identify & Context
- Algorithm & Model



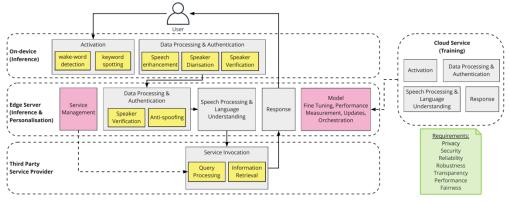
Aaron Ding, Marijn Janssen, Jon Crowcroft "Trustworthy and Sustainable Edge AI: A Research Agenda"


Trustworthy Edge Al


How?


- Voice-activated services
- Vehicular services

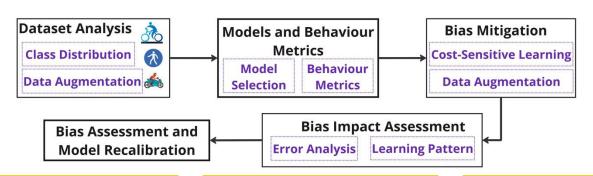
Case for Voice


- Poor situation...
- "Bias exists at every development stage in the well-known VoxCeleb Speaker Recognition Challenge: <u>model building</u>, <u>implementation</u>, and <u>data generation</u>"
- "Most affected are female speakers & non-US nationalities, who experience significant performance degradation."

"Bias Propagation in On-device ML" ACM TOSEM 2023

"Bias in Automated Speaker Recognition"

ACM FACCT 2022


"Characterising the Role of Pre-Processing Parameters in Audio-based Embedded Machine Learning" ACM SenSys 2021

Case for Cars

Poor situation too ...

- "Biased-car dataset leads to algorithmic bias, e.g., towards pedestrians and cyclists"
- "Poor data diversity... Vulnerable classes (e.g., pedestrians and cyclists) generally have less representation within the dataset"

"Bias Detection and Generalization in Al Algorithms on Edge for Autonomous Driving"

ACM/IEEE SEC 2022

"Approximate Edge AI for Energy Efficient Autonomous Driving Services"

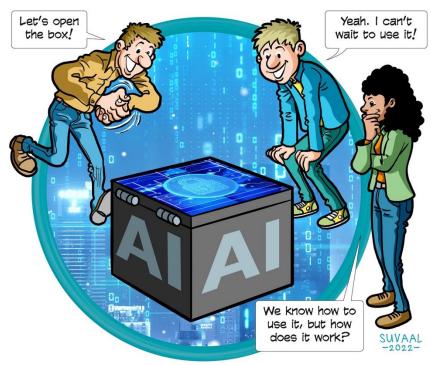
IEEE COMST 2023

"Adaptive Approximate
Computing in Edge AI and IoT
Applications"

Elsevier JSA 2024

Not Enough...

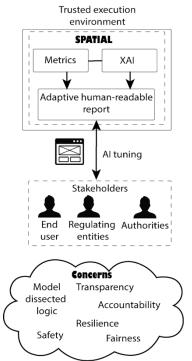
Real case please


Real Cases

Industry + Academia

EU Horizon Project


Score: 98/100 | Rate: 8%





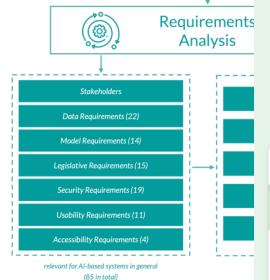
Trust as a Service

secure

Telefónica

montimage

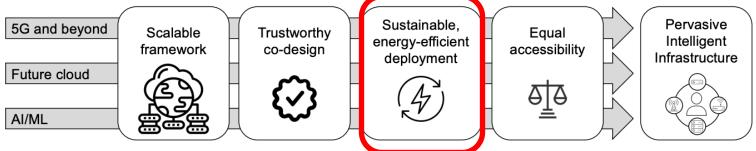
Fraunhofer


Join over 950,000 other people learning about the basics of AI.

Trustworthy Al

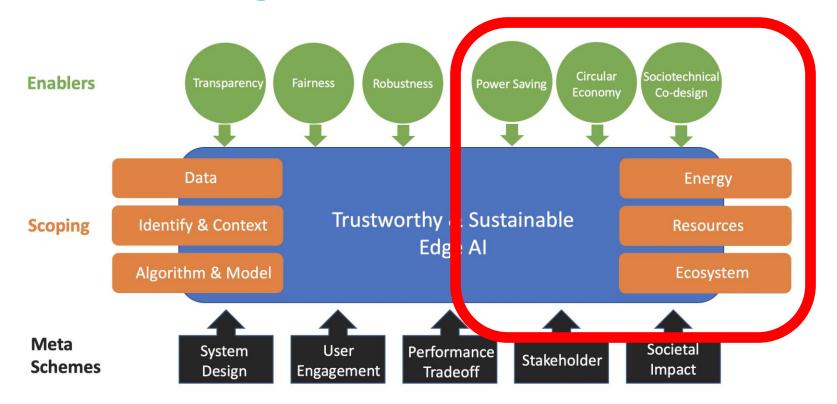
Understand the importance, considerations, and impacts of trustworthy Al.

Buy the course



Roadmap for Edge Al: A Dagstuhl Perspective

Aaron Yi Ding^{1*}, Ella Peltonen², Tobias Meuser³, Atakan Aral⁴, Christian Becker⁵, Schahram Dustdar⁶, Thomas Hiessl⁶, Dieter Kranzlmüller⁷, Madhusanka Liyanage⁸, Setareh Magshudi⁹, Nitinder Mohan¹⁰, Jörg Ott¹⁰, Jan S. Rellermeyer^{11,1}, Stefan Schulte¹², Henning Schulzrinne¹³, Gürkan Solmaz¹⁴, Sasu Tarkoma¹⁵, Blesson Varghese¹⁶, Lars Wolf¹⁷

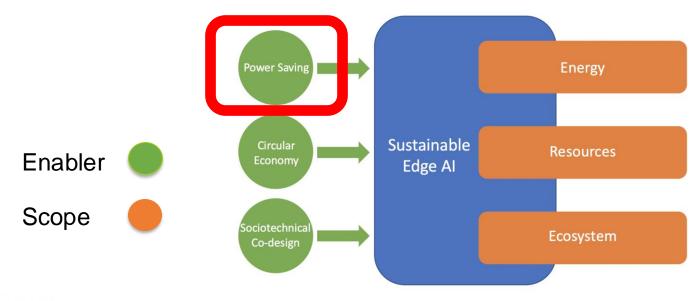


COMPUTER COMMUNICATION REVIEW

Sustainable Edge Al

How?

Research Agenda



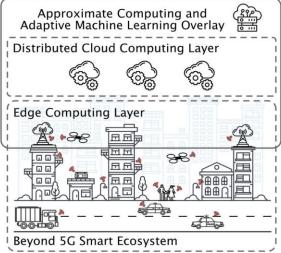
FUDelft

Sustainable is not a slogan

- Energy optimization for Edge AI
 - Full pipeline: data acquisition, transfer, computation, storage

Sustainable Edge Al

- EU Marie Curie ITN: grant of €4M
- 15 Marie Curie Researchers
- 20+ industrial and academic partners



APROPOS Project Sustainable AI

Score: 14.5/15 Rate: 3%

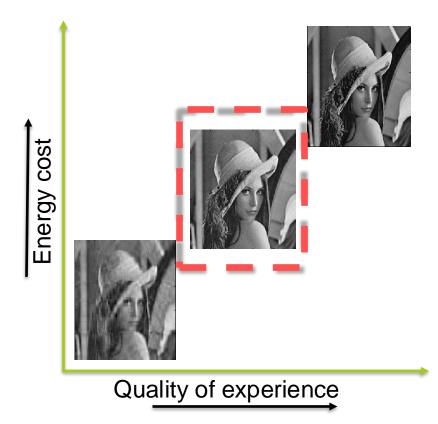
Case of Future Cars

Vehicular Data

- Data increases
- Electric cars: battery life matters!

750MB per second, as Google's driverless car prototype reported

Autonomous Car - Sensors & Data				
Sensors	# Number	Data Volume		
Camera	(8-12)	500 - 3500 Mbit/s		
LiDAR	(2-4)	20-100 Mbit/s		
Radar	(4-6)	0.1-15 Mbit/s		
GPS		50 Kb/s		
Ultrasonic	(8-16)	500-3500 Mb/s		
	20 TB Car/Day			
		Courses Floldwohite		


Energy Awareness

Sweet spot:

- Tolerance on accuracy & latency
- Less safety critical
- Relax the accuracy but still with acceptable experience

How good is good enough?

Test-time Specialization of Dynamic Neural Networks

IEEE CVPR MAT 2024 Best Paper Award

Sam Leroux^{1,*} Dewant Katare² Aaron Yi Ding² Pieter Simoens¹

¹IDLab, Department of Information Technology, Ghent University - imec, Belgium.

²Department of Engineering Systems and Services, Delft University of Technology, The Netherlands.

*Corresponding author: sam.leroux@ugent.be

Adaptive Approximation for

Energy Awareness

Abstract

In recent years, there has been a notable increase in the size of commonly used image classification models. This growth has empowered models to recognize thousands of diverse object types. However, their computational demands pose significant challenges, especially when deploying them on resource-constrained edge devices. In many use cases where a model is deployed on an edge device, only a small subset of the classes will ever be observed by a given model instance. Our proposed test-time specialization of dynamiceural networks allows these models to become faster at recognizing the classes that are observed frequently, while maintaining the ability to recognize all other classes, albeit slightly less efficient. We benchmark our approach on a real-world edge device, obtaining significant speedups compared to the baseline model without test-time adaptation.

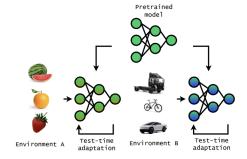


Figure 1. We propose to first train a model on a large and diverse dataset. This model is then deployed on edge devices where it is immediately able to make useful predictions. Over time, the model is updated in a self-supervised way (test-time adaptation) to become more specialized and efficient at processing the data that is commonly observed in this environment.

"Approximate Edge AI for Energy Efficient Autonomous Driving Services"

IEEE COMST 2023 Impact Factor 35,6

"Nimbus: Towards Latency-Energy Efficient Task Offloading for AR Services" IEEE Transactions on Cloud Computing 2022

ruDelft

Independence... Grant

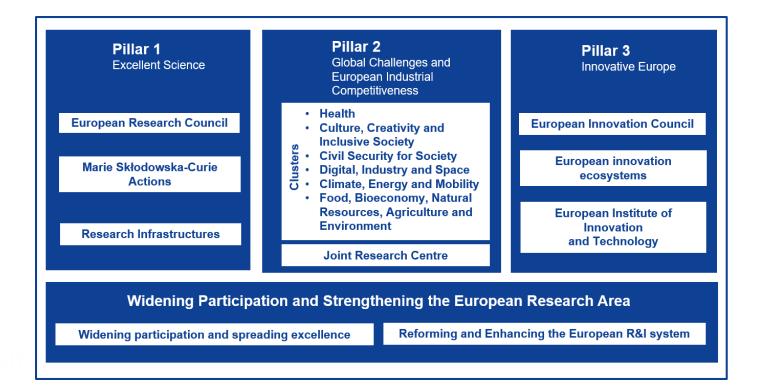
Have you ever applied?

How many times / much @

Binary View

TUDelft

Personal Grants


 MSCA postdoc fellowship MSCA Academic Standing • ERC starting grant **ERC**

Erasmus+

academic mobility

Horizon Europe

Time frame 2021-2027

Takeaway

Academic Freedom Independence

Leadership
Industrial Connections

MSCA (fellow)

ERC

Erasmus+

Personal Grants

Project Grants

MSCA (DN)

Horizon

Takeaway

EDITOR: Schahram Dustdar, dustdar@dsg.tuwien.c

Revisiting Edge Al and Challenges

Tobias Meuser . Technical University of Da. Lauri Lovén ⁹, University of Oulu, 90014 Oule Monowar Bhuvan . Umeå University, 90187 Shishir G. Patil . UC Berkeley, California, Be Schahram Dustdar , Vienna University of Te Atakan Aral . Umeå University, 90187 Umeå. Suzan Bayhan , University of Twente, 7500 Christian Becker . University of Stuttgart. 7 Eyal de Lara , University of Toronto, Toronto Aaron Yi Ding . TU Delft. 2600 AA. Delft. Th Janick Edinger , University of Hamburg, 225 James Gross 9, Royal Institute of Technology Nitinder Mohan , Technical University of M. Andy D. Pimentel . University of Amsterdam Etienne Rivière ⁽⁹⁾, UCLouvain, B-1348, Louvain Henning Schulzrinne . Columbia University. Pieter Simoens . Ghent University-imec. B-9

Roadmap for Edge AI: A Dagstuhl Perspective

Aaron Yi Ding^{1*}, Ella Peltonen², Tobias Meuser³, Atakan Aral⁴, Christian Becker⁵, Schahram Dustdar⁶, Thomas Hiessl⁶, Dieter Kranzlmüller⁷, Madhusanka Liyanage⁸, Setareh Magshudi⁹, Nitinder Mohan¹⁰, Jörg Ott¹⁰, Jan S. Rellermeyer^{11,1}, Stefan Schultei², Henning Schulzrinne¹³, Gürkan Solmaz¹⁴, Sasu Tarkoma¹⁵, Blesson Varghese¹⁶, Lars Wolf⁷

¹TU Delft, ²University of Oulu, ³TU Darmstadt, ⁴University of Vienna, ⁵University of Mannheim, ⁶TU Wien, ⁷LMU Munich, ¹UTU Delft, ²University Dellage Dublin, ⁹University of Tübingen, ¹⁰TU Munich, ¹¹Leibniz University Hannover, ¹²Hamburg University of Technology, ¹⁸Columbia University, ¹⁴NEC Lab, ¹⁸University of Helsinki, ¹⁸Queen's University Belfast, ¹⁷UT Braunschweig

* Corresponding author: Aaron Ding (aaron.ding@tudelft.nl)

Revisiting the Arguments for Edge Computing Research

Blesson Varghese¹, Eyal de Lara², Aaron Ding³, Cheol-Ho Hong⁴, Flavio Bonomi⁵, Schahram Dustdar⁶, Paul Harvey⁷, Peter Hewkin⁶, Weisong Shi⁹, Mark Thiele⁶, Peter Willis¹⁰

¹ Queen's University Belfast, UK ² University of Toronto, Canada ³ TU Delft, Netherlands ⁴ Chung-Ang University, Schoen ⁵ Lymx Software Technologies, USA ⁶ TU Wien, Austria ⁷ Rakuten Mobile, Japan ⁸ SmartEdge Datacentres Ltd., UK/USA ⁹ Wayne State University, USA ¹⁰ British Telecommunications pic, UK

Gürkan Solmaz ⁶, NEC Laboratories Europe, 69115, Heidelberg, Germany

Michael Welzl ⁹, University of Oslo, 0313, Oslo, Norway

Edge artificial intelligence (AI) is an innovative computing paradigm that aims to shift the training and inference of machine learning models to the edge of the network. This paradigm offers the opportunity to significantly impact our everyday lives with new services such as autonomous driving and ubiquitous personalized health care. Nevertheless, bringing intelligence to the edge involves several major challenges, which include the need to constrain model architecture designs, the secure distribution and execution of the trained models, and the substantial network load required to distribute the models and data collected for training. In this article, we highlight key aspects in the development of edge AI in the past and connect them to current challenges. This article aims to identify research opportunities for edge AI, relevant to bring together the research in the fields of artificial intelligence and edge comouting.

Pause Giant Al Experiments: An Open Letter

We call on all Al labs to immediately pause for at least 6 months the training of Al systems more powerful than GPT-4.

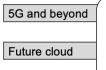
Signatures 33708

Add your signature

Meta Schemes

This paradigm offers the opportunity new services such as autonomous dr Nevertheless, bringin intelligence to include the need to constrain model execution of the trained models, and the models and data collected for tra

Outlook


EdgeSys 2025

@ Rotterdam, NL

ACM/IEEE Symposium on Edge Computing

Equal

accessibility

AI/ML

COMPUTER COMMUNICATION REVIEW