

UNIVERSITY OF ZAGREB Faculty of Electrical Engineering and Computing

Semi-decentralized Training of Spatio-Temporal Graph Neural Networks for Traffic Prediction

Ivan Kralj, mag. ing.

Introduction

- Traffic prediction
 - Speed, volume, density...
 - Forecast horizons: short-term (15 min), mid-term (30-min) and long-term (60-min)

Introduction

What are graphs?

- In general: G = (V, E)
 - V = { v_1 , ..., $v_{|V|}$ } set of nodes
 - $E = \{e_1, ..., e_{|V|}\}$ set of edges
 - $e = (v_i, v_j) \in E$ connection relationship between 2 nodes

- In ML: G = (X, A)
 - $X \in \mathbb{R}^{|V| \times M}$ node feature matrix
 - M number of node features
 - $A \in \mathbb{R}^{|V|x||V|}$ adjacency matrix
 - $A_{ij} = 1$ if $(v_i, v_j) \in E$, otherwise $A_{ij} = 0$

Types of graphs

Graph Representation Learning

- Bridge between original input data and task objective in the graph
 - Learn embedded representation of nodes or entire graph from the input
 - Apply embedded representations to downstream related tasks
 - Node classification, graph classification, link prediction, etc.
- Node embedding
 - $H \in \mathbb{R}^{N \times D}$

GRL Methods

Graph Neural Networks (GNNs)

Graph convolutions...

- Graph Convolutional Networks (GCN)
- Chebyshev Graph Convolutional Neural Networks (ChebConv)
- Graph Sample and Aggregation (GraphSAGE)

However...

Spatio-Temporal Graph Neural Networks

- $\mathcal{G}_t = (\mathcal{V}_t, \mathcal{E}_t, W)$
 - \mathcal{V}_t set of verteces at time step t
 - \mathcal{E}_t set of edges at time step t
 - $W \in \mathbb{R}^{n \times n}$ weighted adjacency matrix

Spatio-Temporal Graph Neural Networks

- Spatio-Temporal Graph Convolutional Network (ST-GCN)
- Diffusion Convolutional Recurrent Neural Network (DCRNN)
- Spatio-Temporal Autoregressive Model (ST-AR)

Centralized

Limitations

Previous works

- M. Nazzal et. al. [1]
 - Enabled semi-decentralized *inference* by deploying a pre-existing model, with no support for semi-decentralized training
- L. Giaretta et. al. & R. Olshevskyi et. al. [2, 3]
 - Explored the challenges and solutions associated with fully decentralized training of GNNs, with their solution *not tailored to ST-GNNs*

Semi-decentralized training of ST-GNNs

Semi-decentralized ST-GNN architecture inspired by Nazzal et. al. [1]

Training approaches

- Centralized Base
- Traditional Federated Learning
- Server-free Federated Learning
- Gossip Learning

Traditional Federated Learning

Server-free Federated Learning

Gossip Learning

Simulator

Experimental setup

- METR-LA & PeMS-BAY
- 3 horizons
- Evaluation metrics
- Sensors are distributed across 7 cloudlets based on proximity and communication range (8 km)

Results

Dataset	Setups	15 min			30 min			60 min		
		MAE	RMSE	WMAPE	MAE	RMSE	WMAPE	MAE	RMSE	WMAPE
METR-LA	Centralized	3.78	9.05	7.45	5.14	11.61	10.12	7.35	14.59	14.47
	Traditional FL	3.97	9.01	7.82	5.40	11.41	10.63	7.82	14.48	15.40
	Server-free FL	3.90	8.98	7.78	5.35	11.37	10.67	7.79	14.41	15.55
	Gossip Learning	3.88	9.04	7.74	5.43	11.35	10.85	7.56	14.42	15.10
PeMS-BAY	Centralized	1.48	3.09	2.38	1.97	4.23	3.17	2.59	5.41	4.17
	Traditional FL	1.50	3.12	2.42	2.03	4.29	3.27	2.67	5.51	4.29
	Server-free FL	1.50	3.12	2.42	2.01	4.25	3.23	2.65	5.44	4.28
	Gossip Learning	1.51	3.12	2.43	2.03	4.28	3.26	2.63	5.39	4.24

AloTwin

Results

10/07/2025

Dataset	Setups	Model [MB]/epoch	Training FLOPs/epoch	Aggregation FLOPs/epoch	Node feature [MB]
METR-LA	Centralized	-	1.68T	-	4.76
	Traditional FL	0.91 / 7	10.92T / 7	1.12M / 7	25.83 / 7
	Server-free FL	1.61 / 7	10.92T / 7	3.64M / 7	25.83 / 7
	Gossip Learning	0.91 / 7	10.92T / 7	2.94M / 7	25.83 / 7
PeMS-BAY	Centralized	-	4.06T	-	11.27
	Traditional FL	0.91 / 7	27.23T / 7	1.12M / 7	66.08 / 7
	Server-free FL	1.82 / 7	27.23T / 7	3.92M / 7	66.08 / 7
	Gossip Learning	0.91 / 7	27.23T / 7	2.94M / 7	66.08 / 7

Conclusion and future work

- Semi-decentralized setups are comparable to centralized approaches in performance metrics
- Highlight overlooked issues in existing literature for distributed ST-GNNs
 - Variation in model performance across different geographical areas
 - Communication overhead and computational cost due to large receptive field of GNNs
- Future work focus on reducing communication overhead
 - Remove duplicated nodes and features

Literature

- M. Nazzal, A. Khreishah, J. Lee, S. Angizi, A. Al-Fuqaha, M. Guizani, Semidecentralized inference in heterogeneous graph neural networks for traffic demand forecasting: An edge-computing approach, IEEE Transactions on Vehicular Technology (2024).
- 2. L. Giaretta, S. Girdzijauskas, Fully-decentralized training of gnns using layer-wise self-supervision (2023).
- 3. Olshevskyi, Rostyslav, Zhongyuan Zhao, Kevin Chan, Gunjan Verma, Ananthram Swami, and Santiago Segarra. "Fully Distributed Online Training of Graph Neural Networks in Networked Systems." arXiv preprint arXiv:2412.06105 (2024).
- 4. Kralj, Ivan, et al. "Semi-decentralized Training of Spatio-Temporal Graph Neural Networks for Traffic Prediction." *arXiv preprint arXiv:2412.03188* (2024).

Training of GNNs

- Forward & backward pass
 - Goal: Update weights and gradients
- Loss function
 - Compare predicted values with ground truth
- Optimization algorithm
 - Minimize error in loss function

