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• Sweden’s state-owned research institute

• ~3300 employees: 4th largest research institute in Europe!

• Deep expertise: from academia to industry

• Wide expertise: from chemistry, to ship design, to computer science

About RISE
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Computer Science @ RISE
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• Intro

– Graph Representation Learning

– (Causal) Temporal GNNs

– Memory Networks

• Use Case (centralized)

• Towards Decentralization

• Conclusion

Agenda
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Intro



Isolated data points are a rarity!

As much information in the relations,
if not more!

Graphs are Everywhere adapted from https://www.sciencedirect.com/science/article/pii/S0031320321003617

adapted from https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008504
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Graph Representation Learning
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Core idea: embed each node based on the embeddings of its neighbours

Graph Neural Networks
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• Homogeneous vs heterogeneous nodes/edges

• Directed vs undirected

• Bipartite

• Weighted

• Node vs edge features

Most GNNs work on static graphs!

A Zoo of Graphs (and GNNs)
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Few graphs are truly immutable!

Different kinds of changes:

• Edge vs node changes

• Additions vs deletions

Often, it’s useful to understand, model and predict the graph evolution

• Temporal GNNs!

Dynamic Graphs
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Idea: process graph snapshots

Cons:

• Full GNN (re-)computation is very 
costly for large graphs

• High-latency, infrequent predictions 

Discrete Temporal GNNs

GNN GNN GNN GNN

t1 t2 t3 t4

TEMPORAL NETWORK PREDICTION
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Process a stream of graph changes

Incremental embedding updates

Continuous Temporal GNNs

CONTINUOUS
TEMPORAL GNN

PREDICTIONNODE ADDED

EDGE ADDED

EDGE REMOVED

EDGE ADDED
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Memory Networks
FA

C
T LONG-

TERM
MEMORY

QUERY

INPUT 
FEATURE 

MAP

FE
A

T
U

R
E

S

GENERALI-
ZATION 
LAYER

OUTPUT 
FEATURE 

MAP
M

EM
O

R
IES

RESPONSE 
LAYER

R
ESP

O
N

SE
Introduced by Weston et al. in “Memory Networks”, ICLR 2015

Key idea: teach the models how to read from and write to a persistent, long-term memory
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Memory Networks (Simplified)
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Continuous Temporal GNNs are Memory Networks
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one embedding 
vector per node

node/edge/graph
predictions
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The Problem with Incremental Changes

A single edge addition can cause significant changes to the overall structure of a graph
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The Problem with Incremental Changes
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Cons of Continuous Temporal GNNs

• Not scalable to denser graphs

• Cannot capture multi-hop dependencies 
in a scalable way



Edges represent timestamped, instantaneous interactions, rather than continuous connections

Temporal Interaction Networks
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Key insight: past interactions are not affected by future interactions

Fast and scalable!

Requires only the latest embeddings
of the interacting nodes

Causal Temporal GNNs

4
3

6

5

21
ℎ1

409 = 𝑓 ℎ1
229 , ℎ3

401

ℎ3
409 = 𝑓 ℎ3

401 , ℎ1
229

21



Use Case:
IoT Botnet Detection 
with Lightweight 
Memory Networks



• Growing number of IoT devices: 30.9 billions in 20251

• IoT security practices are not well-established

• IoT botnets spread easily over the Internet

• IoT botnets are responsible for frequent, large Distributed Denial of Service (DDoS) attacks

– Infamous Mirai example: 600k infected devices, 1.2 Tbps of malicious traffic2

– Can take down major online services (e.g. DNS resolvers)

1. https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
2. https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/

Use Case: IoT Botnet Detection
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IoT Botnets 101

IoT environment 1 IoT environment N

attack
163.243.12.93

163.243.12.93

Goal: early-stage botnet detection 
during the spreading phase

Lots of work on detecting this

Not so much on this
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Exploit global knowledge of the dynamic communication network between devices

• Build a “profile” for each device

• Updated for each packet sent/received

• Take into consideration the network history and topology

• Real-time detection

• Small and fast GRL model

• Key insight: causality!

Our Approach
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LiMNet: Lightweight Memory Network
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IP 𝑖 sent packet 𝑒

to IP 𝑗
map each IP to an 
embedding vector

Is IP 𝑖 (𝑗) malicious?
Is IP 𝑖 (𝑗) under attack?
Is packet 𝑒 malicious?
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LiMNet Architecture
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Input Feature Map

• Source/Destination IP feaures:

– private vs public IP

– unicast vs multicast IP

• Packet features:

– length

– application/transport protocol
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Generalization Layer
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Mutually-recurrent RNN units

29



Output Feature Map + Response Layer
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• Multi-task learning with both node- and edge-level tasks

• Identify malicious nodes -> node-level

• Identify under-attack nodes -> node-level

• Identify malicious packets -> edge-level

• Shallow classifiers
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Significant improvement over state of the art methods

Results
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• Small model

– Can fit in the L2 cache 
of a modern CPU core

• Fast inference

– single CPU core,
no accelerators

– one packet at a time,
no batching

Results
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Towards 
Decentralized 
Inference



• Scalability

• Large volume and velocity of graph updates

• Network is typically the first bottleneck

• Reliability

• Governance

Goal: decentralized continuous inference on dynamic graphs

The Centralization Problem
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Family of decentralized, peer-to-peer protocols

Used for information dissemination or aggregation

Key principle: periodic information exchanges with random peers

Very efficient!

Gossip Protocols
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Decentralized Memory Network

Centralized (e.g. LiMNet) Decentralized
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Metasoma Architecture
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• Performance tradeoff

– decentralized inference based on partial knowledge will never match
centralized inference on global knowledge

• Resource efficiency

– Significant overhead on low-power IoT devices

• Security

– Significant increase in the available attack surface for malware

– Metasoma required a deep security analysis and complex countermeasures

We do not have a perfect solution, but a promising starting point for further research!

Challenges
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Conclusion



• Graph are everywhere -> Graph Representation Learning is key

– Dynamic graphs -> Temporal GNNs

• Memory networks -> powerful abstraction

• Temporal Interaction Networks -> Causal Temporal GNNs

Takeaways
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Our Wider Vision

Centralized Architecture Decentralized Architecture

Scalability, 
reliability and 

governance issues

Global knowledge 
incompatible with privacy

Partial local 
knowledge

Scalable local compute 
and P2P resources
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• Memory networks: Weston et al., Memory Networks, ICLR 2015

• LiMNet: Giaretta et al., LiMNet: Early-Stage Detection of IoT Botnets with Lightweight Memory 
Networks, ESORICS 2021

• Metasoma: Giaretta et al., Metasoma: Decentralized and Collaborative Early-Stage Detection of 
IoT Botnets, preprint available https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-325436

My Ph.D. dissertation:

Lodovico Giaretta, Towards Decentralized Graph Learning

References
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Thank You!
Any Questions?
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