

IEEE CROATIA - INVITED TALK - ZAGREB, 08 NOV 2023

Causal Temporal GNNs as Decentralized Memory Networks

Lodovico Giaretta Iodovico.giaretta@ri.se

About Me

Researcher @ Computer Science department, RISE Research Institutes of Sweden

Ph.D. in ICT @ KTH Royal Institute of Technology, Stockholm

- graduated: June 2023
- thesis: "Towards Decentralized Graph Learning"

Research Interests:

- Decentralized machine learning
- Graph representation learning (GRL)
- Adaptive, scalable, privacy-preserving and energy-efficient fully-decentralized GRL

About RISE

• Sweden's state-owned research institute

• ~3300 employees: 4th largest research institute in Europe!

• Deep expertise: from academia to industry

• Wide expertise: from chemistry, to ship design, to computer science

Computer Science @ RISE

4

Agenda

- Intro
 - Graph Representation Learning
 - (Causal) Temporal GNNs
 - Memory Networks
- Use Case (centralized)
- Towards Decentralization
- Conclusion

Graphs are Everywhere

Isolated data points are a rarity!

As much information in the relations, if not more!

Graph Representation Learning

insights and predictions

graph

independent data points (node embeddings)

Graph Neural Networks

Core idea: embed each node based on the embeddings of its neighbours

$$h_i = f(h_i, \{h_j \mid j \in N(i)\})$$

$$\boldsymbol{h}_{i}^{(k+1)} = \sigma \left(\boldsymbol{W}_{loc}^{(k)} \boldsymbol{h}_{i}^{(k)} + \sum_{j \in N(i)} \boldsymbol{W}_{neigh}^{(k)} \boldsymbol{h}_{j}^{(k)} \right)$$

Graph Neural Networks

Core idea: embed each node based on the embeddings of its neighbours

GNN Layer 1

Χ

A Zoo of Graphs (and GNNs)

- Homogeneous vs heterogeneous nodes/edges
- Directed vs undirected
- Bipartite
- Weighted
- Node vs edge features

Dynamic Graphs

Few graphs are truly immutable!

Different kinds of changes:

- Edge vs node changes
- Additions vs deletions

Often, it's useful to understand, model and predict the graph evolution

• Temporal GNNs!

Discrete Temporal GNNs

Idea: process graph snapshots

Cons:

PREDICTION

- Full GNN (re-)computation is very costly for large graphs
- High-latency, infrequent predictions

Continuous Temporal GNNs

Process a stream of graph changes

Incremental embedding updates

Memory Networks

Introduced by Weston et al. in "Memory Networks", ICLR 2015

Key idea: teach the models how to read from and write to a persistent, long-term memory

Memory Networks (Simplified)

Continuous Temporal GNNs are Memory Networks

The Problem with Incremental Changes

A single edge addition can cause significant changes to the overall structure of a graph

The Problem with Incremental Changes

Cons of Continuous Temporal GNNs

- Not scalable to denser graphs
- Cannot capture **multi-hop dependencies** in a scalable way

RI. SE

Temporal Interaction Networks

Edges represent timestamped, instantaneous interactions, rather than continuous connections

Causal Temporal GNNs

Key insight: past interactions are not affected by future interactions

$$h_1^{(409)} = f\left(h_1^{(229)}, h_3^{(401)}\right)$$

$$h_3^{(409)} = f\left(h_3^{(401)}, h_1^{(229)}\right)$$

Fast and scalable!

Requires only the latest embeddings of the interacting nodes

Use Case: IoT Botnet Detection with Lightweight Memory Networks

Use Case: IoT Botnet Detection

- Growing number of IoT devices: 30.9 billions in 2025¹
- IoT security practices are not well-established
- IoT botnets spread easily over the Internet
- IoT botnets are responsible for frequent, large Distributed Denial of Service (DDoS) attacks
 - Infamous Mirai example: 600k infected devices, 1.2 Tbps of malicious traffic²
 - Can take down major online services (e.g. DNS resolvers)

1. https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/ 2. https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/

Our Approach

Exploit global knowledge of the dynamic communication network between devices

- Build a "profile" for each device
 - Updated for each packet sent/received
 - Take into consideration the network history and topology
- Real-time detection
 - Small and fast GRL model
- Key insight: causality!

LiMNet: Lightweight Memory Network

LiMNet Architecture

Input Feature Map

- Source/Destination IP feaures:
 - private vs public IP
 - unicast vs multicast IP
- Packet features:
 - length
 - application/transport protocol

Generalization Layer

Mutually-recurrent RNN units

Output Feature Map + Response Layer

- Multi-task learning with both node- and edge-level tasks
 - Identify malicious nodes -> node-level
 - Identify under-attack nodes -> node-level
 - Identify malicious packets -> edge-level
- Shallow classifiers

Results

Significant improvement over state of the art methods

Туре	Layers	Layer size	Cell type	Device malicious [AUROC]	Device attacked [AUROC]	Packet malicious [AUROC]
recurrent	1	64	LSTM	85.83	97.38	81.04
recurrent	3	32	GRU	85.82	97.52	81.23
LiMNet	1	32	GRU	<u>98.73</u>	<u>98.72</u>	<u>99.72</u>
LiMNet	1	64	GRU	99.13	98.84	99.75

Results

Small model

Can fit in the L2 cache
of a modern CPU core

• Fast inference

- single CPU core, no accelerators
- one packet at a time, no batching

Туре	Layers	Layer size	Cell type	Model size [KiB]	Inference speed [packets/s]
recurrent	1	64	LSTM	9309	1814
recurrent	3	32	GRU	9472	972
LiMNet	1	32	GRU	65	3381
LiMNet	1	64	GRU	226	3037

Towards Decentralized Inference

The Centralization Problem

• Scalability

- Large volume and velocity of graph updates
- Network is typically the first bottleneck
- Reliability
- Governance

Goal: decentralized continuous inference on dynamic graphs

Gossip Protocols

Family of decentralized, peer-to-peer protocols

Used for information dissemination or aggregation

Key principle: periodic information exchanges with random peers

Very efficient!

Decentralized Memory Network

Centralized (e.g. LiMNet)

local

memories

Decentralized

gossip

Metasoma Architecture

Challenges

- Performance tradeoff
 - decentralized inference based on partial knowledge will *never* match centralized inference on global knowledge
- Resource efficiency
 - Significant overhead on low-power IoT devices
- Security
 - Significant increase in the available attack surface for malware
 - Metasoma required a deep security analysis and complex countermeasures

We do not have a perfect solution, but a promising starting point for further research!

Conclusion

Takeaways

- Graph are everywhere -> Graph Representation Learning is key
 - Dynamic graphs -> Temporal GNNs
- Memory networks -> powerful abstraction

• Temporal Interaction Networks -> Causal Temporal GNNs

Our Wider Vision

RI. SE

References

- Memory networks: Weston et al., Memory Networks, ICLR 2015
- LiMNet: Giaretta et al., LiMNet: Early-Stage Detection of IoT Botnets with Lightweight Memory Networks, ESORICS 2021
- Metasoma: Giaretta et al., *Metasoma: Decentralized and Collaborative Early-Stage Detection of IoT Botnets*, preprint available https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-325436

My Ph.D. dissertation:

Lodovico Giaretta, Towards Decentralized Graph Learning

RI. SE

Acknowledgements

rais-itn.eu

aiotwin.eu

43

Thank You! Any Questions?

