
IEEE CROATIA - INVITED TALK – ZAGREB, 08 NOV 2023

Causal Temporal GNNs 
as Decentralized 
Memory Networks
Lodovico Giaretta lodovico.giaretta@ri.se



Researcher @ Computer Science department, RISE Research Institutes of Sweden

Ph.D. in ICT @ KTH Royal Institute of Technology, Stockholm

– graduated: June 2023

– thesis: “Towards Decentralized Graph Learning”

Research Interests:

– Decentralized machine learning

– Graph representation learning (GRL)

– Adaptive, scalable, privacy-preserving and energy-efficient fully-decentralized GRL

About Me

2



• Sweden’s state-owned research institute

• ~3300 employees: 4th largest research institute in Europe!

• Deep expertise: from academia to industry

• Wide expertise: from chemistry, to ship design, to computer science

About RISE

3



Computer Science @ RISE

4



• Intro

– Graph Representation Learning

– (Causal) Temporal GNNs

– Memory Networks

• Use Case (centralized)

• Towards Decentralization

• Conclusion

Agenda

5



Intro



Isolated data points are a rarity!

As much information in the relations,
if not more!

Graphs are Everywhere adapted from https://www.sciencedirect.com/science/article/pii/S0031320321003617

adapted from https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008504
7



Graph Representation Learning

Traditional

ML

insights and

predictions

GRL

independent

data points

(node embeddings)

graph

8



Core idea: embed each node based on the embeddings of its neighbours

Graph Neural Networks

ℎ𝑖 = 𝑓 ℎ𝑖 , ℎ𝑗 𝑗 ∈ 𝑁 𝑖 A

C

B

D
E

𝒉𝑖
𝑘+1 = 𝜎 𝑾𝑙𝑜𝑐

𝑘 𝒉𝑖
𝑘 + ෍

𝑗∈𝑁 𝑖

𝑾𝑛𝑒𝑖𝑔ℎ
𝑘 𝒉𝑗

𝑘

9



Core idea: embed each node based on the embeddings of its neighbours

Graph Neural Networks

𝒉𝑖
𝑘+1 = 𝜎 𝑾𝑙𝑜𝑐

𝑘 𝒉𝑖
𝑘 + ෍

𝑗∈𝑁 𝑖

𝑾𝑛𝑒𝑖𝑔ℎ
𝑘 𝒉𝑗

𝑘

A

C

B

D
E

10



• Homogeneous vs heterogeneous nodes/edges

• Directed vs undirected

• Bipartite

• Weighted

• Node vs edge features

Most GNNs work on static graphs!

A Zoo of Graphs (and GNNs)

11



Few graphs are truly immutable!

Different kinds of changes:

• Edge vs node changes

• Additions vs deletions

Often, it’s useful to understand, model and predict the graph evolution

• Temporal GNNs!

Dynamic Graphs

12



Idea: process graph snapshots

Cons:

• Full GNN (re-)computation is very 
costly for large graphs

• High-latency, infrequent predictions 

Discrete Temporal GNNs

GNN GNN GNN GNN

t1 t2 t3 t4

TEMPORAL NETWORK PREDICTION

13



Process a stream of graph changes

Incremental embedding updates

Continuous Temporal GNNs

CONTINUOUS
TEMPORAL GNN

PREDICTIONNODE ADDED

EDGE ADDED

EDGE REMOVED

EDGE ADDED

14



Memory Networks
FA

C
T LONG-

TERM
MEMORY

QUERY

INPUT 
FEATURE 

MAP

FE
A

T
U

R
E

S

GENERALI-
ZATION 
LAYER

OUTPUT 
FEATURE 

MAP
M

EM
O

R
IES

RESPONSE 
LAYER

R
ESP

O
N

SE
Introduced by Weston et al. in “Memory Networks”, ICLR 2015

Key idea: teach the models how to read from and write to a persistent, long-term memory

15



Memory Networks (Simplified)

FA
C

T UPDATE 
MEMORY MEMORY

QUERY 
MEMORY

QUERY

R
ESP

O
N

SE

16



Continuous Temporal GNNs are Memory Networks

FA
C

T UPDATE 
MEMORY MEMORY QUERY 

MEMORY

QUERY

R
E

SP
O

N
SE

added/deleted 
node/edge

one embedding 
vector per node

node/edge/graph
predictions

17



The Problem with Incremental Changes

A single edge addition can cause significant changes to the overall structure of a graph

18



The Problem with Incremental Changes

19

Cons of Continuous Temporal GNNs

• Not scalable to denser graphs

• Cannot capture multi-hop dependencies 
in a scalable way



Edges represent timestamped, instantaneous interactions, rather than continuous connections

Temporal Interaction Networks

4
3

6

5

21

20



Key insight: past interactions are not affected by future interactions

Fast and scalable!

Requires only the latest embeddings
of the interacting nodes

Causal Temporal GNNs

4
3

6

5

21
ℎ1

409 = 𝑓 ℎ1
229 , ℎ3

401

ℎ3
409 = 𝑓 ℎ3

401 , ℎ1
229

21



Use Case:
IoT Botnet Detection 
with Lightweight 
Memory Networks



• Growing number of IoT devices: 30.9 billions in 20251

• IoT security practices are not well-established

• IoT botnets spread easily over the Internet

• IoT botnets are responsible for frequent, large Distributed Denial of Service (DDoS) attacks

– Infamous Mirai example: 600k infected devices, 1.2 Tbps of malicious traffic2

– Can take down major online services (e.g. DNS resolvers)

1. https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/​
2. https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/

Use Case: IoT Botnet Detection

23



IoT Botnets 101

IoT environment 1 IoT environment N

attack
163.243.12.93

163.243.12.93

Goal: early-stage botnet detection 
during the spreading phase

Lots of work on detecting this

Not so much on this

24



Exploit global knowledge of the dynamic communication network between devices

• Build a “profile” for each device

• Updated for each packet sent/received

• Take into consideration the network history and topology

• Real-time detection

• Small and fast GRL model

• Key insight: causality!

Our Approach

25



LiMNet: Lightweight Memory Network

FA
C

T UPDATE 
MEMORY MEMORY QUERY 

MEMORY

R
ESP

O
N

SE
IP 𝑖 sent packet 𝑒

to IP 𝑗
map each IP to an 
embedding vector

Is IP 𝑖 (𝑗) malicious?
Is IP 𝑖 (𝑗) under attack?
Is packet 𝑒 malicious?

26



LiMNet Architecture

27



Input Feature Map

• Source/Destination IP feaures:

– private vs public IP

– unicast vs multicast IP

• Packet features:

– length

– application/transport protocol
28



Generalization Layer

ℎ𝑖 𝑅𝑁𝑁𝑠𝑟𝑐

𝑒𝑖𝑗 ℎ𝑗𝑥𝑖 𝑥𝑗

ℎ𝑖
′

ℎ𝑗 𝑅𝑁𝑁𝑑𝑠𝑡

𝑒𝑖𝑗 ℎ𝑖𝑥𝑖 𝑥𝑗

ℎ𝑗
′

Mutually-recurrent RNN units

29



Output Feature Map + Response Layer

ℎ𝑖
′

ℎ𝑗
′

𝑒𝑖𝑗 𝑐𝑙𝑠3

ℎ𝑖
′

ℎ𝑗
′

𝑐𝑙𝑠1

𝑐𝑙𝑠2

𝑐𝑙𝑠1

𝑐𝑙𝑠2

• Multi-task learning with both node- and edge-level tasks

• Identify malicious nodes -> node-level

• Identify under-attack nodes -> node-level

• Identify malicious packets -> edge-level

• Shallow classifiers

30



Significant improvement over state of the art methods

Results

31



• Small model

– Can fit in the L2 cache 
of a modern CPU core

• Fast inference

– single CPU core,
no accelerators

– one packet at a time,
no batching

Results

32



Towards 
Decentralized 
Inference



• Scalability

• Large volume and velocity of graph updates

• Network is typically the first bottleneck

• Reliability

• Governance

Goal: decentralized continuous inference on dynamic graphs

The Centralization Problem

34



Family of decentralized, peer-to-peer protocols

Used for information dissemination or aggregation

Key principle: periodic information exchanges with random peers

Very efficient!

Gossip Protocols

35



Decentralized Memory Network

Centralized (e.g. LiMNet) Decentralized

36



Metasoma Architecture

FA
C

T UPDATE 
MEMORY MEMORY

QUERY 
MEMORY

R
ESP

O
N

SE

IP 𝑖 sent packet 𝑒
to IP 𝑗

map each IP to an 
embedding vector

Is IP 𝑖 (𝑗) malicious?
Is IP 𝑖 (𝑗) under attack?
Is packet 𝑒 malicious?

MERGE 
MEMORIES

M
E

M
O

R
IE

S

memories
gossiped
by peers

37



• Performance tradeoff

– decentralized inference based on partial knowledge will never match
centralized inference on global knowledge

• Resource efficiency

– Significant overhead on low-power IoT devices

• Security

– Significant increase in the available attack surface for malware

– Metasoma required a deep security analysis and complex countermeasures

We do not have a perfect solution, but a promising starting point for further research!

Challenges

38



Conclusion



• Graph are everywhere -> Graph Representation Learning is key

– Dynamic graphs -> Temporal GNNs

• Memory networks -> powerful abstraction

• Temporal Interaction Networks -> Causal Temporal GNNs

Takeaways

40



Our Wider Vision

Centralized Architecture Decentralized Architecture

Scalability, 
reliability and 

governance issues

Global knowledge 
incompatible with privacy

Partial local 
knowledge

Scalable local compute 
and P2P resources

41



• Memory networks: Weston et al., Memory Networks, ICLR 2015

• LiMNet: Giaretta et al., LiMNet: Early-Stage Detection of IoT Botnets with Lightweight Memory 
Networks, ESORICS 2021

• Metasoma: Giaretta et al., Metasoma: Decentralized and Collaborative Early-Stage Detection of 
IoT Botnets, preprint available https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-325436

My Ph.D. dissertation:

Lodovico Giaretta, Towards Decentralized Graph Learning

References

42



Acknowledgements

rais-itn.eu aiotwin.eu

43



Thank You!
Any Questions?


	Slide 1
	Slide 2: About Me
	Slide 3: About RISE
	Slide 4: Computer Science @ RISE
	Slide 5: Agenda
	Slide 6
	Slide 7: Graphs are Everywhere
	Slide 8: Graph Representation Learning
	Slide 9: Graph Neural Networks
	Slide 10: Graph Neural Networks
	Slide 11: A Zoo of Graphs (and GNNs)
	Slide 12: Dynamic Graphs
	Slide 13: Discrete Temporal GNNs
	Slide 14: Continuous Temporal GNNs
	Slide 15: Memory Networks
	Slide 16: Memory Networks (Simplified)
	Slide 17: Continuous Temporal GNNs are Memory Networks
	Slide 18: The Problem with Incremental Changes
	Slide 19: The Problem with Incremental Changes
	Slide 20: Temporal Interaction Networks
	Slide 21: Causal Temporal GNNs
	Slide 22
	Slide 23: Use Case: IoT Botnet Detection
	Slide 24: IoT Botnets 101
	Slide 25: Our Approach
	Slide 26: LiMNet: Lightweight Memory Network
	Slide 27: LiMNet Architecture
	Slide 28: Input Feature Map
	Slide 29: Generalization Layer
	Slide 30: Output Feature Map + Response Layer
	Slide 31: Results
	Slide 32: Results
	Slide 33
	Slide 34: The Centralization Problem
	Slide 35: Gossip Protocols
	Slide 36: Decentralized Memory Network
	Slide 37: Metasoma Architecture
	Slide 38: Challenges
	Slide 39
	Slide 40: Takeaways
	Slide 41: Our Wider Vision
	Slide 42: References
	Slide 43: Acknowledgements
	Slide 44

