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About Me

Researcher @ Computer Science department, RISE Research Institutes of Sweden

Ph.D. in ICT @ KTH Royal Institute of Technology, Stockholm
— graduated: June 2023

— thesis: “Towards Decentralized Graph Learning”

Research Interests:
— Decentralized machine learning
— Graph representation learning (GRL)

— Adaptive, scalable, privacy-preserving and energy-efficient fully-decentralized GRL

N



About RISE

« Sweden’s state-owned research institute
« ~3300employees: 4th largest research institute in Europe!
* Deep expertise: from academia to industry

* Wide expertise: from chemistry, to ship design, to computer science
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Computer Science @ RISE

Cybersecurity Internet of Things and 5G Datacenter
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Agenda

Intro
— Graph Representation Learning
— (Causal) Temporal GNNs

— Memory Networks

Use Case (centralized)

Towards Decentralization

Conclusion
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Graphs are Everywhere

Isolated data points are a rarity!

As much information in the relations,
if not more!

adapted from https://www.sciencedirect.com/science/article/pii/S0031320321003617
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adapted from https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi. 1008504



Graph Representation Learning
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Graph Neural Networks

Core idea: embed each node based on the embeddings of its neighbours
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Graph Neural Networks

Core idea: embed each node based on the embeddings of its neighbours NN
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A Zoo of Graphs (and GNNs)

« Homogeneous vs heterogeneous nodes/edges
» Directed vs undirected

* Bipartite

* Weighted

* Node vs edge features

Most GNNs work on static graphs!
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Dynamic Graphs

Few graphs are truly immutable! f
Different kinds of changes: A
* Edge vs node changes

« Additions vs deletions

Often, it’s useful to understand, model and predict the graph evolution

* Temporal GNNs!
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Discrete Temporal GNNs

Idea: process graph snapshots

f ‘ ‘ Cons:
' ‘ * Full GNN (re-)computation is very

costly for large graphs

1 l 1 1 » High-latency, infrequent predictions
GNN GNN GNN GNN
} } } }

TEMPORALNETWORK —— PREDICTION
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Continuous Temporal GNNs

EDGE ADDED

EDGE REMOVED

EDGE ADDED

NODE ADDED
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Process a stream of graph changes

Incremental embedding updates
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Memory Networks

Introduced by Weston et al. in “Memory Networks”, ICLR 2015

Key idea: teach the models how to read from and write to a persistent, long-term memory
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Memory Networks (Simplified)
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Continuous Temporal GNNs are Memory Networks

one embedding node/edge/graph
added/deleted vector per node predictions
node/edge l l
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The Problem with Incremental Changes

A single edge addition can cause significant changes to the overall structure of a graph
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The Problem with Incremental Changes

EDGE ADDED
Cons of Continuous Temporal GNNs

* Not scalable to denser graphs EDGE REMOVED

* Cannot capture multi-hop dependencies

in a scalable way EDGE ADDED 1 1
NODE ADDED CONTINUOUS
TEMPORAL GNN FRELICTIC
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Temporal Interaction Networks

Edges represent timestamped, instantaneous interactions, rather than continuous connections
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Causal Temporal GNNs
Key insight: past interactions are not affected by future interactions
h§409) _ f(h§229),hg401))

(409) _ (401) 4(229)
hs =f (hs , hy )

Fast and scalable!

Requires only the latest embeddings
of the interacting nodes
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Use Case:

IoT Botnet Detection
with Lightweight
Memory Networks
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Use Case: IoT Botnet Detection

Growing number of 1oT devices: 30.9 billions in 20251

loT security practices are not well-established

loT botnets spread easily over the Internet

loT botnets are responsible for frequent, large Distributed Denial of Service (DDoS) attacks
— Infamous Mirai example: 600k infected devices, 1.2 Tbps of malicious traffic?

— Can take down major online services (e.g. DNS resolvers)

1. https://www.statista.com/statistics/1101442/iot-number-of-connected-devices-worldwide/
2. https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-a-retrospective-analysis/
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IoT Bothets 101

Goal: early-stage botnet detection
during the spreading phase

loT environmentA

Not so much on this

163.243.12.93 S



Our Approach

Exploit global knowledge of the dynamic communication network between devices

 Build a “profile” for each device
» Updated for each packet sent/received

» Take into consideration the network history and topology

* Real-time detection

* Small and fast GRL model

P

» Key insight: causality! ’. (
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LiMNet: Lightweight Memory Network

Is IP i (j) malicious?

IP i sent packet e map each IP to an Is IP i (j) under attack?
toIPj embedding vector Is packet e malicious?
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LiMNet Architecture

CLASSIFICATION RESULTS
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Input Feature Map
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Generalization Layer
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Output Feature Map + Response Laye

{ SLINSHY NOLLVOIAISSVID I

2 ! i3 -
1 ! E Ei - l:i —*hs—ii | els i__
= e el LR IR - :
»cls g L el ! ! o elss [
! = B:l r ‘—f—h; L P e e
sens Ima —— B || @ e
»cls = I L S T e R e
2 gl i ! cellyur ‘ ii I ¥ clsy =
= e, | T p I |
o | b vl e
| —‘ N
TN T e e - o - -
»cls,
« Multi-task learning with both node- and edge-level tasks
 Identify malicious nodes -> node-level
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Results

Significant improvement over state of the art methods

Laver Cell Device Device Packet
Type Layers siie type malicious attacked malicious
P [AUROC] [AUROC] [AUROC]
recurrent 1 64 LSTM 85.83 97.38 81.04
recurrent 3 32 GRU 85.82 97.52 81.23
LiMNet 1 32 GRU 08.73 98.72 99.72
LiMNet 1 64 GRU 99.13 98.84 99.75

N
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Results

 Small model

— Canfit in the L2 cache
of a modern CPU core

 Fastinference

— single CPU core,
no accelerators

— one packet at a time,
no batching

Layer Cell Modelsize Inference
Type Layers size  tvpe [KiB] Speed
yp [packets/s]
recurrent 1 64 LSTM 9309 1814
recurrent 3 32 GRU 9472 972
LiMNet 1 32 GRU 65 3381
LiMNet 1 64 GRU 226 3037

N



Towards
Decentralized
Inference
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The Centralization Problem

» Scalability
* Large volume and velocity of graph updates

* Network is typically the first bottleneck
* Reliability

 Governance

Goal: decentralized continuous inference on dynamic graphs
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Gossip Protocols

Family of decentralized, peer-to-peer protocols
Used for information dissemination or aggregation
Key principle: periodic information exchanges with random peers

Very efficient!
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Decentralized Memory Network

IoT packets
layer

IoT packets
layer J Local Metasoma

instance

local memories gossip
I traffic received memories
J ~
Central e I capture from peers to peers
entr ) ! ”
monitoring ———| A Random memory . | L
> gossip layer N : )
system global global »
memories  predictions I [ Y
Global nacket I Local incoming — 3
Cr; ture and outgoing local local
P I packet capture memories  predictions

Centralized (e.g. LiMNet) Decentralized
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Metasoma Architecture

map each IP to an
embedding vector

UPDATE

— MEMORY ., MEMORY

MERGE
MEMORIES

IP i sent packet e
tolIPj

FACT

memories
gossiped —
by peers

MEMORIES

QUERY
MEMORY

Is IP i (j) malicious?
Is IP i (j) under attack?
Is packet e malicious?

ASNOJS3d
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Challenges

* Performance tradeoff
— decentralized inference based on partial knowledge will never match
centralized inference on global knowledge
* Resource efficiency

— Significant overhead on low-power loT devices

» Security
— Significant increase in the available attack surface for malware

— Metasoma required a deep security analysis and complex countermeasures

We do not have a perfect solution, but a promising starting point for further research!
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Conclusion
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Takeaways

* Graph are everywhere -> Graph Representation Learning is key

— Dynamic graphs -> Temporal GNNs
* Memory networks -> powerful abstraction

* Temporal Interaction Networks -> Causal Temporal GNNs
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Our Wider Vision

Centralized Architecture Decentralized Architecture
S.calg!aility, Global knowledge
reliability and incompatible with privacy Scalable local compute
governance issues and P2P resources

®
Partial local Jf’\'gx\
knowledge .

o & R
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Thank You!
Any Questions?
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