
SMTaaS: Serving problem solving 
workloads over the computing continuum

Pantelis Frangoudis
Distributed Systems Group, TU Wien

Joint work with Stefan Holzer, Christos Tsigkanos, Schahram Dustdar



Motivation

2



Emerging CPS/IoT systems

● Strict functional & non-functional specifications
○ E.g., safety-related

● Formalisms prescribe application behavior

● Continuous monitoring on service & environment status

● Often in practice: 

Problems can be formulated as Satisfiability Modulo Theories (SMT) 

3



Many examples in the IoT space…
● Motion planning for robots (Imeson & Smith)

● Verifying correct operation of IoT services & edge computing systems 
(Avasalcai et al.)

● Detecting threats in rule-based smart home systems (Wang et al.)

4

F. Imeson, S.L. Smith, "An SMT-Based Approach to Motion Planning for Multiple Robots With Complex Constraints," IEEE Trans. Robotics, 2019.
C. Avasalcai et al., "Resource Management for Latency-Sensitive IoT Applications With Satisfiability," IEEE TSC, 2022.
Q. Wang et al., "Charting the Attack Surface of Trigger-Action IoT Platforms," ACM CCS, 2019.



… but also beyond that

● BGP control plane verification (Tang et al.)

● SDN security (Bringhenti et al.)

● Function placement & connectivity policy enforcement in NFV (Marchetto et al.)

5

A. Tang et al., "Lightyear: Using Modularity to Scale BGP Control Plane Verification," ACM SIGCOMM, 2023.
D. Bringhenti et al., "Automatic, verifiable and optimized policy-based security enforcement for SDN-aware IoT networks," Comput. Networks, 2022.
G. Marchetto et al., "A Formal Approach to Verify Connectivity and Optimize VNF Placement in Industrial Networks," IEEE Trans. Ind. Informatics, 2021.



Key observations

● Input data/problem instances originate at the edge

● Solving SMT problems can be computationally expensive
○ Problem if latency-critical operations depend on the outcome

● Solving in the cloud cannot always help (though sometimes it does)
○ Network latency may offset offloading gains
○ Intermittent connectivity? Confidentiality?

6



On the positive side…

7

The Computing Continuum



Key question

How to efficiently serve SMT workloads over distributed infrastructure 
along the computing continuum?

● Architecture: Transparent evaluation of SMT problems
● Offloading decisions: Where to solve (device, edge/fog, cloud)?

8



SMT-as-a-Service: System Design

9



Node abstraction

● Workload: SMT formulas, originating at IoT/edge devices

● Solver node:
○ Exposes API endpoints to accept properly encoded problem instances
○ Abstracts solver internals: any compatible SMT solver works

● Interoperability: SMT-LIB as the encoding format

10



Recursive architecture

● Invocations passed on along solver path edge-to-cloud

● Each node independently decides: solve locally or forward?

● Transparent to client/application

11



Solver node: bird’s eye view

12



Where to solve an SMT problem instance?

13



● Decides whether to solve a received formula locally or offload it further

● Each node maintains set of candidate offload targets

● Independent decision based on:
○ Information about the formula at hand
○ Node capabilities and local view of system state (e.g., latency, available battery)

● Plug-in framework for custom decision making
○ Should consider node capabilities – edge/IoT resource limitations
○ Different criteria possible – e.g., response time, energy cost

Offloading decision making module

14



Decisions via reinforcement learning

● Examples investigated: Q-Learning, DQN

● State: formula + fog node conditions (e.g., latency to target)

● Actions: set of candidate offload targets

● Reward: depends on what we optimize for - latency, energy cost, 
weighted combination

15



Which DM module to run in a node?

● Operator’s decision – think of host capabilities

● Q-Learning with reduced state representation for low-end IoT nodes
○ E.g., resource-constrained robot

● Deep Q-Network on more capable fog nodes
○ E.g., on power supply, with GPU

16



Does it work?

17



Implementation & experiments

● Open-source, runs on diverse platforms: low-end robots, RPi, …
○ https://github.com/Stefan2911/SMTaaS

● Solver back-end depends on host capabilities
○ CVC4 @ IoT/edge, Z3 or MathSAT5 @ Cloud

● Testbed experiments w. SMT workloads

from official SMT-LIB benchmark dataset

● 360o-view example from spec to evaluation
○ Path planning for fog-supported robots

18



Deployment scenario

19

● Workload: Simple, medium, hard SMT problems (following measurements)
● Introduce varying latency in edge-cloud path
● Use simplified/abstract energy cost model



Summary of results

● Learns to balance among local-edge-cloud execution for lowest latency

● Saves >40% energy for mixed workloads vs. device-only or offloading-only

● Feasible & practical to offer SMTaaS

● Offloading capability may be critical for CPS use cases
○ Robot path planning on 16-vertex grid: 171s (on-device) vs. 2.6s (w. Q-learning 

based offloading)

 

20



The way forward

21



Open problems

● More sophisticated offloading strategies
○ Capturing latency/cost constraints, more accurate state representation

● Scenarios beyond CPS
○ Network verification, integration with ETSI MEC for lower latency

● System aspects
○ Resource management & dynamic deployment of solver nodes, workload 

balancing, etc.

 

22



Thank you!

Pantelis Frangoudis

pantelis.frangoudis@dsg.tuwien.ac.at

More details: S. Holzer, P. Frangoudis, C. Tsigkanos, S. Dustdar, "SMT-as-a-Service for Fog-Supported Cyber-Physical 
Systems," Proc. ICDCN, 2024.


