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Outline

• Artificial Intelligence of Things, AIoT

• Requirements and architecture

• Learning pipeline: adaptive orchestration of FL workflows
• Hierarchical FL

• FL configuration

• Architecture and design

• Pipeline reconfiguration

• Framework for adaptive orchestration of FL workflows

• Hands on session: using framework for adaptive orchestration of FL 
workflows to run FL
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Artificial Intelligence of
Things, AIoT 

Definition, example, challenges

Edge orchestration
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Artificial Intelligence of Things, AIoT

• IoT evolution

• Brings AI into smart physical spaces

• Boundaries between physical and digital 
world disappear 

• Smart physical spaces generate large 
amounts of streaming data (sensing) for 
learning, creation of new AI models

• AI models are increasingly used in smart 
physical spaces, inference facilitates 
decision-making

• Actuation enables machines to act
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AIoT: a simple example application

Occupancy Detection and Smart 
Lighting 

• smart home environment that 
automatically adjusts lighting (e.g. color 
and brightness) based on the number of 
people present

• Hardware: an edge device, USB 
webcam and smart LED bulb 

• Edge device hosts 
1) a pretrained ML model which analyses a 

video stream for people counting; the 
number of people detected is sent to 2)

2) an IoT platform for integration and control 
of smart devices: a smart LED bulb for 
color and brightness control
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AIoT challenges

• distributed and heterogeneous environments with limited resources in 
terms of available processing power and energy

• requires efficient orchestration of services in the computing continuum, 
algorithms adapted to the distributed IoT-edge-cloud environment

• real-time data processing 
• ML algorithms need to  be adapted to online learning

• data streams from IoT devices are often incomplete and prone to errors

• strict privacy and security requirements
• protection of sensitive user data

• ensuring device integrity and security of the physical environment
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Edge orchestration

• Services running on edge nodes have to be 
orchestrated to ensure their high availability

• technologies: microservices, containers, 
container orchestration tools

• Service orchestration is needed to 
• schedule
• deploy        
• manage

• Main goal:
• continuously ensure the required QoS level 

to IoT devices and application-level services 
exposed to end users 
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services in a distributed edge 

computing environment



Edge orchestration architecture

• Essential building blocks
• IoT Device (limited resources) – data source 

and/or destination

• Edge Node (runs containerized edge
services) – “heterogeneous infrastructure”

• Edge Service (autonomous, stateless,
and portable) – deploy, start, stop, replicate, 
migrate

• Orchestrator – centralized component
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• ML workflows/pipelines: learning 
vs. inference

• Placement of ML models

• Federated learning and 
aggregation

• Which node should be used for 
inference for a data stream from a 
particular IoT device?
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What is so special about orchestration middleware for AIoT?
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AIoTwin Orchestration 
Middleware

Requirements and Architecture
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AIoTwin Deliverable 1.1 - Report on Use Cases, Requirements, and 
Architecture (1). 31 Dec 2023 PDF

https://aiotwin.eu/_download/repository/D1.1%20-%20Report%20on%20Use%20Cases,%20Requirements,%20and%20Architecture-v.1.0.pdf


Specified requirements
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No Description

1 Efficiently manage and monitor resources on each 
node

2 Collect the information on the underlying network 
connecting nodes in the continuum

3 Deploy and manage services across the continuum

4 Collect the distribution of data available on node for 
ML

5 Run a configuration model to output configuration 
of an ML pipeline

6 Deploy ML components based on a learning 
configuration

7 Monitor learning performance

No Description

8 Reconfigure the learning pipeline if a 
better learning performance can be 
achieved

9 Deploy and manage inference 
components.

10 Monitor inference accuracy

11 Monitor inference service performance

12 Maintain inference performance and 
dynamically adapt to changes in the 
system

13 Maintain a desired QoS level for clients 
using the inference services

FL-related Inference-relatedGPO



General Architecture for 
Orchestration of ML Pipelines

• Orchestrator

o Central entity, deployed in the 
cloud for high availability

o General purpose orchestration, 
learning- and inference-specific 
components

• Node

o Runs ML pipeline services in a 
Docker container or WebAssembly
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Adaptive orchestration of FL 
pipelines: the architecture

• FL Clients and Aggregators

• Nodes participating in training may 
have different (i) hardware 
specifications, (ii) network 
characteristics, or (iii) data 
distributions. 

• An adaptive orchestration 
mechanism is needed to deploy the 
entities of the FL pipeline, monitor 
the execution of the pipeline, and 
perform reconfiguration when 
needed. 
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QoS-aware load balancing for 
inference: the architecture

• QEdgeProxy, a distributed QoS-
aware load balancer 

• QEdgeProxy serves as a „QoS 
agent” for IoT clients within the 
computing continuum, and acts as 
an external routing component, i.e., 
an intermediary between IoT clients 
and IoT services across the 
computing continuum. 

• Adapts to changes in the continuum 
to meet QoS requirements
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AIoTwin Orchestration 
Middleware

Adaptive orchestration of federated learning workflows
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Ivan Čilić, Anna Lackinger, Alireza Furutanpey, Ilir Murturi, Pantelis 
Frangoudis, Ivana Podnar Žarko, Schahram Dustdar. Adaptive 
Orchestration of Federated Learning Workflows. In preparation for 
journal submission. Sept 2024.



• FL challenges
oHardware heterogeneity -> 

stragglers

oUnstable and bandwidth-limited 
network

oUnbalanced data distribution 
(non-IID)

• Hierarchical FL to reduce 
communication costs and 
increase system reliability
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Hierarchical Federated Learning
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Hierarchical FL configuration
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• How should we organize clients 

into clusters?

• Data distribution

• Communication costs

• Aggregation configuration?

• Aggregation algorithm

• Aggregation frequency

• Synchronous vs 

asynchronous



Architecture for adaptive orchestration of 
FL workflows

• Dynamic edge environment

• An adaptive orchestration 
mechanism is needed to

• deploy the entities of the FL 
pipeline (clients, local/global 
aggregators),

• monitor the execution of the 
pipeline, and 

• perform reconfiguration when 
needed. 
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Orchestration workflow
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Orchestration workflow: steps 1/2

1. Receive training and cost configuration
• Training configuration

• ML model, training parameters (batch size, learning rate…)

• Cost configuration
• Cost can be expressed in terms of communication, computation, time, or energy
• Two cost configuration types

• Total available budget
• Minimize cost to reach target accuracy

2. Collect node features
• Infrastructure-specific features

• Node resources and underlying network

• FL-specific features
• Node role (client, local/global aggregator)
• If node is a client:

• Data distribution
• Historical training behavior (training time, resources used during training)
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Orchestration workflow: steps 2/2

3. Identify optimal FL configuration
• Configuration output: cluster organization, aggregation frequency…

• Orchestration is independent of the configuration strategy
• For example: clustering to minimize communication cost with tradeoff to data balancing [1]

4. Deploy FL components
• Nodes download the FL services and FL pipeline starts

5. Monitor the pipeline
• Infrastructure monitoring

• Node states and their resources, network state, etc.

• FL performance monitoring
• Accuracy, loss, etc.

• Cost monitoring
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[1] Y. Deng et al., “Share: Shaping data distribution at edge for 
communication-efficient hierarchical federated learning”, ICDCS 2021



AIoTwin Orchestration 
Middleware

Adaptive orchestration of federated learning 
workflows: Reconfiguration
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Ivan Čilić, Anna Lackinger, Alireza Furutanpey, Ilir Murturi, Pantelis 
Frangoudis, Ivana Podnar Žarko, Schahram Dustdar. Adaptive 
Orchestration of Federated Learning Workflows. In preparation for 
journal submission. Sept 2024.



Pipeline reconfiguration

• Key characteristic of adaptive orchestration: dynamically adjusting 
to changes during the FL runtime

• Adjustment = reconfiguration

• Reconfiguration triggers
• Reactive: upon the occurrence of an event (e.g. node left)
• Proactive: before the occurrence of an event (e.g. node is predicted to 

become overloaded)

• Reconfiguration steps
1. Identify new optimal configuration
2. Identify the differences between new and current configuration to define 

reconfiguration changes (∆R)
3. Apply changes to the FL pipeline
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Reconfiguration cost

• Reconfiguration comes with a cost Ψ𝑟𝑒𝑐 that can be expressed with 
two parameters:

• Reconfiguration change cost Ψ𝑟𝑐

• Cost for applying all reconfiguration changes

• Ψ𝑟𝑐 = σ𝑖=1
∆𝑅 𝜓𝑟𝑐 𝑖 , Ψ𝑟𝑐 ≥ 0 

• Post reconfiguration cost Ψ𝑝𝑟

• Difference of cost per global round between new and current configuration

• Ψ𝑝𝑟 =  Ψ𝑔𝑟
𝑛𝑒𝑤 − Ψ𝑔𝑟

𝑐𝑢𝑟 = ΔΨ𝑔𝑟 , Ψ𝑝𝑟 ∈ (−∞, +∞)
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Reconfiguration decision: communication 
budget
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Reconfiguration decision: cost minimization
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Reconfiguration decision: proactive 
approach

• Several methods to calculate node utility [2]:
• Data sample-based utility measurement

• Can be calculated before training

• Model-based utility measurement
• Can be calculated only after some training epochs

• Our tested approach: 
1. Calculate reconfiguration cost and get remaining 

rounds with new configuration

2. Calculate function that described performance 
trend (regression)

3. Calculate node utility from the data distribution

4. Reconfigure if performance improvement is 
predicted
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[2] L. Fu et al., “Client Selection in Federated Learning: Principles, Challenges, 
and Opportunities”, IEEE Internet of Things Journal, 2023



Proactive approach problems

• Various factors, besides the dataset size or unseen class data, affect the 
performance when introducing a new node

• Obtaining data distribution might violate privacy requirements

• Adding a new node can even introduce performance degradation because
• New clusters are imbalanced

• Model overfits to the new data (or unseen class)

• Classes in the new node’s dataset may be similar or completely different

• So we need the information not only about the number of classes but also their characteristics

• Conclusion
• Too many parameters that are hard to generalize to support different models and 

datasets
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Reconfiguration decision: reactive 
approach

• Reconfiguration validation algorithm (total budget):
1. Calculate reconfiguration cost 

2. Calculate function that describes the performance trend (regression)

3. Perform reconfiguration

4. Wait for W (reconfiguration validation window) rounds
a) Get revert reconfiguration cost

b) Calculate remaining rounds with initial configuration

c) Calculate remaining rounds with new configuration

d) Calculate function that described the performance trend of new configuration

e) If predicted value new < predicted value current

 Revert configuration
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Reconfiguration 
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Implementation: Framework for adaptive 
FL Orchestration on Top of Kubernetes

• FL Orchestrator
o implemented in Golang
obuilt on top of Kubernetes
oconnects to Kubernetes API to deploy

services and obtain node information

• FL Service
oClient, local aggregator or global

aggregator
o Implemented in Python
oExtends Flower framework for FL

• Evaluation
oK3s cluster
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AIoTwin Orchestration 
Middleware

Hands on session: Adaptive FL orchestration and 
reconfiguration validation
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Experimental environment

• K3s cluster consisting of 9 nodes
• Each node is a VM with 2 CPU cores and 2 GB of RAM

• FL tasks are using only CPU’s

• Deployment options
• Simulated infrastructure

• A node can host multiple FL services

• FL entities and underlying network are defined with a configuration file

• Actual infrastructure
• One cluster node = one FL service

• Network costs can be real or manually defined
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Reconfiguration validation: improvement
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https://wandb.ai/aiotwins/k8sreal_7nodes_v2/runs/56nwu4le?nw=nwuserivancilic

https://wandb.ai/aiotwins/k8sreal_7nodes_v2/runs/56nwu4le?nw=nwuserivancilic
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Reconfiguration validation: degradation
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