
2nd AIoTwin Summer School, September 16, 2024

AIoTwin Orchestration Middleware

Ivan Čilić, Katarina Vuknić, Ana Petra Jukić, Ivana Podnar Žarko

University of Zagreb, Faculty of Electrical Engineering and Computing (UNIZG-FER)

Outline

• Artificial Intelligence of Things, AIoT

• Requirements and architecture

• Learning pipeline: adaptive orchestration of FL workflows
• Hierarchical FL

• FL configuration

• Architecture and design

• Pipeline reconfiguration

• Framework for adaptive orchestration of FL workflows

• Hands on session: using framework for adaptive orchestration of FL
workflows to run FL

2

Artificial Intelligence of
Things, AIoT

Definition, example, challenges

Edge orchestration

3

Artificial Intelligence of Things, AIoT

• IoT evolution

• Brings AI into smart physical spaces

• Boundaries between physical and digital
world disappear

• Smart physical spaces generate large
amounts of streaming data (sensing) for
learning, creation of new AI models

• AI models are increasingly used in smart
physical spaces, inference facilitates
decision-making

• Actuation enables machines to act

4

1. sensing

2. learning

3. decision-
making

4. acting

AIoT: a simple example application

Occupancy Detection and Smart
Lighting

• smart home environment that
automatically adjusts lighting (e.g. color
and brightness) based on the number of
people present

• Hardware: an edge device, USB
webcam and smart LED bulb

• Edge device hosts
1) a pretrained ML model which analyses a

video stream for people counting; the
number of people detected is sent to 2)

2) an IoT platform for integration and control
of smart devices: a smart LED bulb for
color and brightness control

5

IoT platform
(Home Assistant)

GW

Edge Node

video
stream

no. of
people

1. sensing

3. acting

adjust colour
and brightness

2. decision-
making

AIoT challenges

• distributed and heterogeneous environments with limited resources in
terms of available processing power and energy

• requires efficient orchestration of services in the computing continuum,
algorithms adapted to the distributed IoT-edge-cloud environment

• real-time data processing
• ML algorithms need to be adapted to online learning

• data streams from IoT devices are often incomplete and prone to errors

• strict privacy and security requirements
• protection of sensitive user data

• ensuring device integrity and security of the physical environment

6

Edge orchestration

• Services running on edge nodes have to be
orchestrated to ensure their high availability

• technologies: microservices, containers,
container orchestration tools

• Service orchestration is needed to
• schedule
• deploy
• manage

• Main goal:
• continuously ensure the required QoS level

to IoT devices and application-level services
exposed to end users

7

services in a distributed edge

computing environment

Edge orchestration architecture

• Essential building blocks
• IoT Device (limited resources) – data source

and/or destination

• Edge Node (runs containerized edge
services) – “heterogeneous infrastructure”

• Edge Service (autonomous, stateless,
and portable) – deploy, start, stop, replicate,
migrate

• Orchestrator – centralized component

8

• ML workflows/pipelines: learning
vs. inference

• Placement of ML models

• Federated learning and
aggregation

• Which node should be used for
inference for a data stream from a
particular IoT device?

9

What is so special about orchestration middleware for AIoT?

Learning Inference

Aggregation

Aggregation

Inference

Learning

Inference

AIoTwin Orchestration
Middleware

Requirements and Architecture

10

AIoTwin Deliverable 1.1 - Report on Use Cases, Requirements, and
Architecture (1). 31 Dec 2023 PDF

https://aiotwin.eu/_download/repository/D1.1%20-%20Report%20on%20Use%20Cases,%20Requirements,%20and%20Architecture-v.1.0.pdf

Specified requirements

11

No Description

1 Efficiently manage and monitor resources on each
node

2 Collect the information on the underlying network
connecting nodes in the continuum

3 Deploy and manage services across the continuum

4 Collect the distribution of data available on node for
ML

5 Run a configuration model to output configuration
of an ML pipeline

6 Deploy ML components based on a learning
configuration

7 Monitor learning performance

No Description

8 Reconfigure the learning pipeline if a
better learning performance can be
achieved

9 Deploy and manage inference
components.

10 Monitor inference accuracy

11 Monitor inference service performance

12 Maintain inference performance and
dynamically adapt to changes in the
system

13 Maintain a desired QoS level for clients
using the inference services

FL-related Inference-relatedGPO

General Architecture for
Orchestration of ML Pipelines

• Orchestrator

o Central entity, deployed in the
cloud for high availability

o General purpose orchestration,
learning- and inference-specific
components

• Node

o Runs ML pipeline services in a
Docker container or WebAssembly

12

Adaptive orchestration of FL
pipelines: the architecture

• FL Clients and Aggregators

• Nodes participating in training may
have different (i) hardware
specifications, (ii) network
characteristics, or (iii) data
distributions.

• An adaptive orchestration
mechanism is needed to deploy the
entities of the FL pipeline, monitor
the execution of the pipeline, and
perform reconfiguration when
needed.

13

QoS-aware load balancing for
inference: the architecture

• QEdgeProxy, a distributed QoS-
aware load balancer

• QEdgeProxy serves as a „QoS
agent” for IoT clients within the
computing continuum, and acts as
an external routing component, i.e.,
an intermediary between IoT clients
and IoT services across the
computing continuum.

• Adapts to changes in the continuum
to meet QoS requirements

14

AIoTwin Orchestration
Middleware

Adaptive orchestration of federated learning workflows

15

Ivan Čilić, Anna Lackinger, Alireza Furutanpey, Ilir Murturi, Pantelis
Frangoudis, Ivana Podnar Žarko, Schahram Dustdar. Adaptive
Orchestration of Federated Learning Workflows. In preparation for
journal submission. Sept 2024.

• FL challenges
oHardware heterogeneity ->

stragglers

oUnstable and bandwidth-limited
network

oUnbalanced data distribution
(non-IID)

• Hierarchical FL to reduce
communication costs and
increase system reliability

16

Hierarchical Federated Learning

17

Hierarchical FL configuration

18

• How should we organize clients

into clusters?

• Data distribution

• Communication costs

• Aggregation configuration?

• Aggregation algorithm

• Aggregation frequency

• Synchronous vs

asynchronous

Architecture for adaptive orchestration of
FL workflows

• Dynamic edge environment

• An adaptive orchestration
mechanism is needed to

• deploy the entities of the FL
pipeline (clients, local/global
aggregators),

• monitor the execution of the
pipeline, and

• perform reconfiguration when
needed.

19

Orchestration workflow

20

Orchestration workflow: steps 1/2

1. Receive training and cost configuration
• Training configuration

• ML model, training parameters (batch size, learning rate…)

• Cost configuration
• Cost can be expressed in terms of communication, computation, time, or energy
• Two cost configuration types

• Total available budget
• Minimize cost to reach target accuracy

2. Collect node features
• Infrastructure-specific features

• Node resources and underlying network

• FL-specific features
• Node role (client, local/global aggregator)
• If node is a client:

• Data distribution
• Historical training behavior (training time, resources used during training)

21

Orchestration workflow: steps 2/2

3. Identify optimal FL configuration
• Configuration output: cluster organization, aggregation frequency…

• Orchestration is independent of the configuration strategy
• For example: clustering to minimize communication cost with tradeoff to data balancing [1]

4. Deploy FL components
• Nodes download the FL services and FL pipeline starts

5. Monitor the pipeline
• Infrastructure monitoring

• Node states and their resources, network state, etc.

• FL performance monitoring
• Accuracy, loss, etc.

• Cost monitoring

22

[1] Y. Deng et al., “Share: Shaping data distribution at edge for
communication-efficient hierarchical federated learning”, ICDCS 2021

AIoTwin Orchestration
Middleware

Adaptive orchestration of federated learning
workflows: Reconfiguration

23

Ivan Čilić, Anna Lackinger, Alireza Furutanpey, Ilir Murturi, Pantelis
Frangoudis, Ivana Podnar Žarko, Schahram Dustdar. Adaptive
Orchestration of Federated Learning Workflows. In preparation for
journal submission. Sept 2024.

Pipeline reconfiguration

• Key characteristic of adaptive orchestration: dynamically adjusting
to changes during the FL runtime

• Adjustment = reconfiguration

• Reconfiguration triggers
• Reactive: upon the occurrence of an event (e.g. node left)
• Proactive: before the occurrence of an event (e.g. node is predicted to

become overloaded)

• Reconfiguration steps
1. Identify new optimal configuration
2. Identify the differences between new and current configuration to define

reconfiguration changes (∆R)
3. Apply changes to the FL pipeline

24

25

∆R = 1 ∆R = 5

Reconfiguration cost

• Reconfiguration comes with a cost Ψ𝑟𝑒𝑐 that can be expressed with
two parameters:

• Reconfiguration change cost Ψ𝑟𝑐

• Cost for applying all reconfiguration changes

• Ψ𝑟𝑐 = σ𝑖=1
∆𝑅 𝜓𝑟𝑐 𝑖 , Ψ𝑟𝑐 ≥ 0

• Post reconfiguration cost Ψ𝑝𝑟

• Difference of cost per global round between new and current configuration

• Ψ𝑝𝑟 = Ψ𝑔𝑟
𝑛𝑒𝑤 − Ψ𝑔𝑟

𝑐𝑢𝑟 = ΔΨ𝑔𝑟 , Ψ𝑝𝑟 ∈ (−∞, +∞)

26

Reconfiguration decision: communication
budget

27

Reconfiguration decision: cost minimization

28

Reconfiguration decision: proactive
approach

• Several methods to calculate node utility [2]:
• Data sample-based utility measurement

• Can be calculated before training

• Model-based utility measurement
• Can be calculated only after some training epochs

• Our tested approach:
1. Calculate reconfiguration cost and get remaining

rounds with new configuration

2. Calculate function that described performance
trend (regression)

3. Calculate node utility from the data distribution

4. Reconfigure if performance improvement is
predicted

29

[2] L. Fu et al., “Client Selection in Federated Learning: Principles, Challenges,
and Opportunities”, IEEE Internet of Things Journal, 2023

Proactive approach problems

• Various factors, besides the dataset size or unseen class data, affect the
performance when introducing a new node

• Obtaining data distribution might violate privacy requirements

• Adding a new node can even introduce performance degradation because
• New clusters are imbalanced

• Model overfits to the new data (or unseen class)

• Classes in the new node’s dataset may be similar or completely different

• So we need the information not only about the number of classes but also their characteristics

• Conclusion
• Too many parameters that are hard to generalize to support different models and

datasets

30

31

Reconfiguration decision: reactive
approach

• Reconfiguration validation algorithm (total budget):
1. Calculate reconfiguration cost

2. Calculate function that describes the performance trend (regression)

3. Perform reconfiguration

4. Wait for W (reconfiguration validation window) rounds
a) Get revert reconfiguration cost

b) Calculate remaining rounds with initial configuration

c) Calculate remaining rounds with new configuration

d) Calculate function that described the performance trend of new configuration

e) If predicted value new < predicted value current

 Revert configuration

32

33

34

Reconfiguration
Reconfiguration
validation

W = 5

Implementation: Framework for adaptive
FL Orchestration on Top of Kubernetes

• FL Orchestrator
o implemented in Golang
obuilt on top of Kubernetes
oconnects to Kubernetes API to deploy

services and obtain node information

• FL Service
oClient, local aggregator or global

aggregator
o Implemented in Python
oExtends Flower framework for FL

• Evaluation
oK3s cluster

35

AIoTwin Orchestration
Middleware

Hands on session: Adaptive FL orchestration and
reconfiguration validation

36

Experimental environment

• K3s cluster consisting of 9 nodes
• Each node is a VM with 2 CPU cores and 2 GB of RAM

• FL tasks are using only CPU’s

• Deployment options
• Simulated infrastructure

• A node can host multiple FL services

• FL entities and underlying network are defined with a configuration file

• Actual infrastructure
• One cluster node = one FL service

• Network costs can be real or manually defined

37

Reconfiguration validation: improvement

38

39

40

https://wandb.ai/aiotwins/k8sreal_7nodes_v2/runs/56nwu4le?nw=nwuserivancilic

https://wandb.ai/aiotwins/k8sreal_7nodes_v2/runs/56nwu4le?nw=nwuserivancilic

41

Reconfiguration validation: degradation

42

	Slide 1: AIoTwin Orchestration Middleware
	Slide 2: Outline
	Slide 3: Artificial Intelligence of Things, AIoT
	Slide 4: Artificial Intelligence of Things, AIoT
	Slide 5: AIoT: a simple example application
	Slide 6: AIoT challenges
	Slide 7: Edge orchestration
	Slide 8: Edge orchestration architecture
	Slide 9: What is so special about orchestration middleware for AIoT?
	Slide 10: AIoTwin Orchestration Middleware
	Slide 11: Specified requirements
	Slide 12: General Architecture for Orchestration of ML Pipelines
	Slide 13: Adaptive orchestration of FL pipelines: the architecture
	Slide 14: QoS-aware load balancing for inference: the architecture
	Slide 15: AIoTwin Orchestration Middleware
	Slide 16: Hierarchical Federated Learning
	Slide 17
	Slide 18: Hierarchical FL configuration
	Slide 19: Architecture for adaptive orchestration of FL workflows
	Slide 20: Orchestration workflow
	Slide 21: Orchestration workflow: steps 1/2
	Slide 22: Orchestration workflow: steps 2/2
	Slide 23: AIoTwin Orchestration Middleware
	Slide 24: Pipeline reconfiguration
	Slide 25
	Slide 26: Reconfiguration cost
	Slide 27: Reconfiguration decision: communication budget
	Slide 28: Reconfiguration decision: cost minimization
	Slide 29: Reconfiguration decision: proactive approach
	Slide 30: Proactive approach problems
	Slide 31
	Slide 32: Reconfiguration decision: reactive approach
	Slide 33
	Slide 34
	Slide 35: Implementation: Framework for adaptive FL Orchestration on Top of Kubernetes
	Slide 36: AIoTwin Orchestration Middleware
	Slide 37: Experimental environment
	Slide 38: Reconfiguration validation: improvement
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Reconfiguration validation: degradation

