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Outline

* Artificial Intelligence of Things, AloT
* Requirements and architecture

 Learning pipeline: adaptive orchestration of FL workflows
 Hierarchical FL
» FL configuration
 Architecture and design
 Pipeline reconfiguration
* Framework for adaptive orchestration of FL workflows

« Hands on session: using framework for adaptive orchestration of FL
workflows to run FL
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Artificial Intelligence of Things, AloT

* |0T evolution
 Brings Al into smart physical spaces

« Boundaries between physical and digital
world disappear

* Smart physical spaces generate large
amounts of streaming data (sensing) for
learning, creation of new Al models

« Al models are increasingly used in smart
physical spaces, inference facilitates
decision-making

 Actuation enables machines to act
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AloT. a simple example application

Occupancy Detection and Smart
Lighting

« smart home environment that
automatically adjusts lighting (e.g. color

and brightness) based on the number of

people present

« Hardware: an edge device, USB
webcam and smart LED bulb

« Edge device hosts

1) a pretrained ML model which analyses a
video stream for people counting; the
number of people detected is sent to 2)

2) an loT platform for integration and control
of smart devices: a smart LED bulb for
color and brightness control
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AloT challenges

» distributed and heterogeneous environments with limited resources in
terms of available processing power and energy

* requires efficient orchestration of services in the computing continuum,
algorithms adapted to the distributed loT-edge-cloud environment

* real-time data processing
« ML algorithms need to be adapted to online learning
 data streams from loT devices are often incomplete and prone to errors

e strict privacy and security requirements
 protection of sensitive user data
 ensuring device integrity and security of the physical environment
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Edge orchestration

* Services running on edge nodes have to be
orchestrated to ensure their high availability
 technologies: microservices, containers,
container orchestration tools

e Service orchestration i1s needed to

 schedule S
. deploy _ services |nad|_str|buted edge
computing environment
* manage
« Main goal:

* continuously ensure the required QoS level
to 10T devices and application-level services
exposed to end users

AloTwin
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Edge orchestration architecture

 Essential building blocks

* |oT Device (limited resources) — data source
and/or destination

Node Discovery

Node Management

« Edge Node (runs containerized edge

services) — “heterogeneous infrastructure” Service Registry
« Edge Service (autonomous, stateless,

and portable) — deploy, start, stop, replicate, Service Scheduling

migrate

» Orchestrator — centralized component Service Management

Service Migration

Orchestrator Functionalities

loT Device Registry
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What is so special about orchestration middleware for AloT?

« ML workflows/pipelines: learning
vS. inference

 Placement of ML models (

* Federated learning and
aggregation

 Which node should be used for
Inference for a data stream from a
particular lIoT device?

Inference

Cloud layer

)

Device layer
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AloTwin Orchestration
Middleware

Requirements and Architecture

AloTwin Deliverable 1.1 - Report on Use Cases, Requirements, and
Architecture (1). 31 Dec 2023 PDF
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https://aiotwin.eu/_download/repository/D1.1%20-%20Report%20on%20Use%20Cases,%20Requirements,%20and%20Architecture-v.1.0.pdf

Specified requirements

1

Efficiently manage and monitor resources on each
node

2

Collect the information on the underlying network
connecting nodes in the continuum

Deploy and manage services across the continuum

4

Collect the distribution of data available on node for

ML

5

Run a configuration model to output configuration
of an ML pipeline

6

Deploy ML components based on a learning

configuration

7

Monitor learning performance

GPO

AloTwin

No Description
8 Reconfigure the learning pipeline if a
better learning performance can be
achieved
@ Fl-related
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General Architecture for
Orchestration of ML Pipelines

* Orchestrator

o Central entity, deployed in the
cloud for high availability

o General purpose orchestration,
learning- and inference-specific
components

 Node

o Runs ML pipeline services in a
Docker container or WebAssembly

Orchestrator

/ Learning

Configuration

Learning Inference
Controller Controller
General Purpose
Orchestrator
Service Service
\ LTzl Controller Registry
Node
Virtualization
Agent
Virtualization Engine
Network Proxy Learn_lng Infere_nce
Service Service

Network Agent

\

Learning Agent ., ..

Inference Agent
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Cloud ?e trator 'FL ‘ \
Adaptive orchestration of FL St
pipelines: the architecture

e FL CIients and Aggregators S
» Nodes participating in training may T
have difierent (i) hardware e
specifications, (ii) network iy
characteristics, or (iii) data T @
distributions. N oty
° An adaptive OrCheStration s s
mechanism is needed to deploy the (= S
entities of the FL pipeline, monitor A A
the execution of the pipeline, and L T
perform reconfiguration when oo @ i @

needed . \ MLMody \ MLMody




QoS-aware load balancing for
Inference: the architecture

 QEdgeProxy, a distributed QoS-
aware load balancer

 QEdgeProxy serves as a ,,QoS
agent” for IoT clients within the
computing continuum, and acts as
an external routing component, i.e.,
an intermediary between |oT clients
and loT services across the
computing continuum.

« Adapts to changes in the continuum
to meet QoS requirements

Orchestrator

General Purpose
Orchestrator

Node
Controller

.

Inference
Controller

Service Service
Controller Registry

Virtualization
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Virtualization
Engine

QEdgeProxy Inference

@ Service
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\ Agent ML Model Age /

Node
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Virtualization
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Adaptive orchestration of federated learning workflows

lvan Cili¢, Anna Lackinger, Alireza Furutanpey, llir Murturi, Pantelis
Frangoudis, Ivana Podnar Zarko, Schahram Dustdar. Adaptive
Orchestration of Federated Learning Workflows. In preparation for
journal submission. Sept 2024.
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Hierarchical Federated Learning

Global Aggregator

* FL challenges
o Hardware heterogeneity ->

stragglers
o Unstable and bandwidth-limited —_—
Global model
network [T e updates
. . . CIusterA / . ; N\ \ Cluster B !
o Unbalanced data distribution ¥ o . |
. (non-”D) . Ag;:::;el:tor‘ ; : IAglg;:’:gaalator '

* Hierarchical FL to reduce . L
communication costs and i /\ ] | | Locatmone
. . .y : ! ! : updates
increase system reliability B A A VI S BV AV
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Hierarchical FL configuration

 How should we organize clients
Into clusters?
« Data distribution
« Communication costs
« Aggregation configuration?
« Aggregation algorithm
« Aggregation frequency
« Synchronous vs
asynchronous
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Architecture for adaptive orchestration of
FL workflows

« Dynamic edge environment o ~
* An adaptive orchestration s
mechanism Is needed to Sencipuposs """""""""""""""""""""""
» deploy the entities of the FL o seroun TR
pipeline (clients, local/global N o p
aggregators), ‘
* monitor the execution of the E
pipeline, and 4 )
* perform reconfiguration when | S
needed. i
N /

AloTwin




rchestration workflow

User initiated
start

-

Receive training
and cost
configuration |

Y

Collect node
features

Y

Identify optimal |
FL configuration|"

|

Configuration

— N No— ?
changed? 00— Node state changed®
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Yes |
) l ¥ ¥ P
. Deploy FL . Monitor the Budget exceeded or [ N\
eploy S Round finished? ———Yes—» g —vYes—>»{ StopFL |
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AloTwin



Orchestration workflow: steps 1/2

1. Recelve training and cost configuration

 Training configuration
* ML model, training parameters (batch size, learning rate...)
« Cost configuration
« Cost can be expressed in terms of communication, computation, time, or energy

« Two cost configuration types
» Total available budget
» Minimize cost to reach target accuracy

2. Collect node features

* Infrastructure-specific features
* Node resources and underlying network
» FL-specific features
* Node role (client, local/global aggregator)
 If node is a client:

» Data distribution
 Historical training behavior (training time, resources used during training)

AloTwin



Orchestration workflow: steps 2/2

3. ldentify optimal FL configuration
» Configuration output: cluster organization, aggregation frequency...

« Orchestration is independent of the configuration strategy
* For example: clustering to minimize communication cost with tradeoff to data balancing [1]

4. Deploy FL components
* Nodes download the FL services and FL pipeline starts

5. Monitor the pipeline
* Infrastructure monitoring
 Node states and their resources, network state, etc.

* FL performance monitoring
« Accuracy, loss, etc.

« Cost monitoring

[1] Y. Deng et al., “Share: Shaping data distribution at edge for
communication-efficient hierarchical federated learning”, ICDCS 2021
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Adaptive orchestration of federated learning
workflows: Reconfiguration

lvan Cili¢, Anna Lackinger, Alireza Furutanpey, Ilir Murturi, Pantelis
Frangoudis, lvana Podnar Zarko, Schahram Dustdar. Adaptive
Orchestration of Federated Learning Workflows. In preparation for
journal submission. Sept 2024.
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Pipeline reconfiguration

* Key characteristic of adaptive orchestration: dynamically adjusting
to changes during the FL runtime
« Adjustment = reconfiguration

» Reconfiguration triggers
« Reactive: upon the occurrence of an event (e.g. node left)

* Proactive: before the occurrence of an event (e.g. node is predicted to
become overloaded)

* Reconfiguration steps

1. ldentify new optimal configuration
2. ldentify the differences between new and current configuration to define
reconfiguration changes (AR)

3. Apply changes to the FL pipeline

AloTwin
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Reconfiguration cost

* Reconfiguration comes with a cost ¥,... that can be expressed with
two parameters:

« Reconfiguration change cost ¥,
« Cost for applying all reconfiguration changes
* W = lAfl Yre (@), Pre = 0
* Post reconfiguration cost ¥,,,.
 Difference of cost per global round between new and current configuration

W = WneW _ Qeur — AQ @ € (—oo, 400)
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Reconfiguration decision: communication
budget

......................................

(a) Scenario A (b) Scenario B
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Reconfiguration decision: cost minimization

Accuracy Accuracy

Round ' Round

Rreconf Rnew R R" conf R R
Cost Cost
e e
g R L

T, T

Round : Round
Rreconf Rnew R Rlemnf R R

(a) Scenario A (b) Scenario B
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Reconfiguration decision: proactive

approach
« Several methods to calculate node utility [2]:
« Data sample-based utility measurement | D
« Can be calculated before training
- Model-based utility measurement g — w2

« Can be calculated only after some training epochs

 QOur tested approach:
1. Calculate reconfiguration cost and get remaining .

rounds with new configuration

2. Calculate function that described performance
trend (regression)

Calculate node utility from the data distribution

Reconfigure if performance improvement is
predicted

uuuuu

> W

ACTUE] e APPrOX fiNGl s fpprox 10

[2] L. Fu et al., “Client Selection in Federated Learning: Principles, Challenges,
and Opportunities”, IEEE Internet of Things Journal, 2023
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Proactive approach problems

e Various factors, besides the dataset size or unseen class data, affect the
performance when introducing a new node

« Obtaining data distribution might violate privacy requirements

« Adding a new node can even introduce performance degradation because

* New clusters are imbalanced
« Model overfits to the new data (or unseen class)

» Classes in the new node’s dataset may be similar or completely different
« So we need the information not only about the number of classes but also their characteristics

« Conclusion
« Too many parameters that are hard to generalize to support different models and

datasets
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Reconfiguration decision: reactive
approach

» Reconfiguration validation algorithm (total budget):
1. Calculate reconfiguration cost
2. Calculate function that describes the performance trend (regression)
3. Perform reconfiguration

4. Walit for W (reconfiguration validation window) rounds
a) Get revert reconfiguration cost
b) Calculate remaining rounds with initial configuration
c) Calculate remaining rounds with new configuration
d) Calculate function that described the performance trend of new configuration

e) If predicted value new < predicted value current
Revert configuration

AloTwin
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Implementation: Framework for adaptive
FL Orchestration on Top of Kubernetes

* FL Orchestrator

o iImplemented in Golang
o built on top of Kubernetes

o connects to Kubernetes API to deploy
services and obtain node information

 FL Service

o Client, local aggregator or global
aggregator

o Implemented in Python
o Extends Flower framework for FL

 Evaluation
o K3s cluster

AloTwin
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Hands on session: Adaptive FL orchestration and
reconfiguration validation
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Experimental environment

» K3s cluster consisting of 9 nodes
« Each node is a VM with 2 CPU cores and 2 GB of RAM

 FL tasks are using only CPU'’s

* Deployment options

 Simulated infrastructure

« A node can host multiple FL services
« FL entities and underlying network are defined with a configuration file

 Actual infrastructure
* One cluster node = one FL service
« Network costs can be real or manually defined

AloTwin



Reconfiguration validation: improvement

. nl
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[INFO] fl-orch: Startiné FL with co modelSize 3 @06, and cost type totalBudget
15 n6] [n7 n8

:nl InternalAddress:0.0.0.0:8€ A :fl-ga-svc ) ParentAddress: Port:8088 NumClients:2 Rounds:108 LocalRounds:0}
xgators ::
2 InternalAddre 0.0 3 erna :fl-la-svec-n ) ParentAddress:fl-ga C 0 80 NumClients:2 Rounds:180 LocalRoun
- ¢ M i B0 ParentAddress:fl-ga-svc :8080 Port:8080 NumClients:2 Rounds:100 LocalRounds:2}

2 Epochs:2 DataDistribution:map[@:
? Epoch DataDistribution:map[3:
2 Epoch DataDistribution:map[6:

ch DataD ibution:map[@:
3 Epochs:2 DataDistribution:map[3:

2024-09-11T09:01:50.0027 [INFO]
; 4-09-11T 01:50.0027 [INFO]
-09-11T :50.0C [INFO]
Optimal clu =k » nd ng] [n7
t comm cost:
-09-11TE9:81:50.0037Z [INFO]
-B9-11T 01:50.0037 [INFO] g reconfigurat .
-@9-11T §1:50.087Z [INFO] f T nfiguration e ition se or round: 16
- ' 3.007Z [INFO]
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[INFO] fl-o : Starting reconf evaluation...
[INFO] f : End accuracy: 39.42

[INFO] f rch: Predicted accur

[INFO] f Reconf change c

] g
[INFO] f : Remaining budget: 743
[INFO] f : Start rounds remaining:
[INFO] f rch: End rounds remaining: 37.€
[INFO] f : Start accuracy final: 44.§
[INFO] f : End accura final: 56.74

[INFO]

2024-09-11T09:58:12.040Z [INFO] fl-orch: Communication budget
Total cost: 100485.00
Final accuracy:

https://wandb.ai/aiotwins/k8sreal 7nodes v2/runs/56nwudle?nw=nwuserivancilic
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Reconfiguration validation: degradation
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