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Model compression: a brief introduction

* Pruning

e Quantization

e Knowledge Distillation
e Low Rank Factorization

s Pruning in more details

* Pruning criteria

* Pruning granularity
* Pruning ratio

e \When to prune
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What Is Model Compression?

* Reducing the size of a model

* without significantly compromising
its predictive accuracy.
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Why Model Compression?

Deep learning models
are compute- and
memory- intensive.

Model compression
enables Al on-device

-

Edge devices have
limited power, memory,
and compute.

Applications: Alol,
wearables,
autonomous drones.
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Model
Compression
Techniques

Pruning

Quantization

Konwledge distillation

Low rank factorization
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What Is Pruning?

* Systematically removing less significant parameters of a NN
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What Is Quantization?

* Reduce the total number of bits required to represent each parameter

* usually converting floating-point numbers into integers

quantization >

2 bit

index [in bits) value

1 [01) 0

2 ! [10] 0.4

32 bit
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What Is Knowledge Distillation?

* Transferring experience from a largescale model (teacher) to a smaller-scale model (student)
* extracting the informative aspects of a large model’s behaviour
* instilling this knowledge into a smaller model
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What Is Low-rank Factorization?

Decomposing large, dense weight matrices into smaller, lower-rank matrices.
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Pruning
In more details




What Is Pruning?

* Also referred to as “Network Sparsification”

* Selective removal of network parameters (weights and neurons)
* those that contribute the least to the network’s output
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Pruning happens in human brain
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| Neural Network Pruning

* In general, we could formulate the pruning as
follows:

arg min L(x; Wp)
9
subject to

||Wp||0 <N

« [ represents the objective function for neural
network training;

« X is input, W is original weights, W is pruned
weights;

. [IW,]| calculates the #nonzeros in Wy, and N is
the target #nonzeros.

arg min L(x; W)
W
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Neural Network Pruning
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Non-zero values (preserved) -

Zero-values (pruned)
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Let’s see a demo!

 Refer to the notebook

class Net (nn.Module) :
def init (self):
super (Net, self). init ()

N0

arameters
2 paramters

self.convl = nn.Conv2d(l, 32, 3, 1) # 1 x 32 x 3 = 288 %
self.conv?2 = nn.Conv2d (32, 64, 3, 1) # 32 x 64 x 3=18, 4
self.dropoutl = nn.Dropout (0.25)

self.dropout?2 = nn. Drogout(O.S)

self.fcl = nn.L1near(9 16, 128) # 9216 x 128 = 1,179,648 parameters
self.fc2 = nn.Linear (128, 10) # 128 x 10 = 1,280 parameters

digit: 0 digit: 1 digit: 2 digit: 3 digit: 4 digit: 5 digit: 6 digit: 7 digit: 8

digit: 9



https://colab.research.google.com/drive/1K-uJO15JKNpXEf1YzyI2idwNWDX5EfHr#scrollTo=fY5IOTRzGcyt

Neural network pruning
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Neural network pruning

[ Train Connectivity J
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Neural network pruning
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Neural network pruning
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| Neural Network Pruning 8

Baseline: a basketball Baseline: a brown dog is Baseline: a manis riding Baseline: a soccer
player in a white uniform  running through a grassy a surfboard on a wave. player in red is running in
is playing with a ball . field. the field.

Pruned 90%: a Pruned 90%: a brown Pruned 90%: amanina Pruned 95%: amanina
basketball player in a dog is running through a  wetsuit is riding a wave red shirt and black and
white uniform is playing  grassy area. on a beach. white black shirt is

with a basketball. runnina throuah a field.

Efficient Methods and Hardware for Deep Learning [Han S., Stanford University]



Neural Network Pruning

* Make NNs smaller by removing
connections and neurons

. . ] e
* Which connections and neurons? [ ITEERE,

* With what granularity? =

* How many?
* When?
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| Magnitude-based Pruning 8l

A heuristic pruning criterion

* Magnitude-based pruning considers weights with larger absolute values are more important
than other weights.

* For element-wise pruning,
Importance = | W|

« Example
1 -5 Element-wise 11 | I-5 1 5 0| -5
Weight Importance Pruned Weight

Learning Both Weights and Connections for Efficient Neural Network [Han et al., NeurlPS 2015]




| Magnitude-based Pruning

A heuristic pruning criterion

R
S

* Magnitude-based pruning considers weights with larger absolute values are more important
than other weights.

* For row-wise pruning, the L1-norm magnitude can be defined as,

Importance = Z |w; |, where W is the structural set S of parameters W

S
Example
3 | -2 L1-norm Sl+|-2 S 010
1| -5 Row-wise 1]+|-5 6 1 | -5
Weight Importance Pruned Weight

Learning Both Weights and Connections for Efficient Neural Network [Han et al., NeurlPS 2015]




| Magnitude-based Pruning

A heuristic pruning criterion

R
S

* Magnitude-based pruning considers weights with larger absolute values are more important
than other weights.

e For row-wise pruning, the L2-norm magnitude can be defined as,

Importance = Z | w, |2, where W) is the structural set S of parameters W
ieS
Example
V13
3 | -2 L2-norm NI J13 00
. V26
1| -5 Row-wise NTTET: J26 1| -5
Weight Importance Pruned Weight

Learning Both Weights and Connections for Efficient Neural Network [Han et al., NeurlPS 2015]



| Magnitude-based Pruning

A heuristic pruning criterion

R
S

* Magnitude-based pruning considers weights with larger absolute values are more important
than other weights.

« Magnitude is also known as Lp-norm defined as,

1

P

WS p= Z |w;|” | , where W is a structural set of parameters
=)
« Example
\/ﬁ
S | 2 L2-norm NIET J13 0|0
: V26
1| -5 Row-wise Ve J26 1| -5
Weight Importance Pruned Weight

Learning Structured Sparsity in Deep Neural Networks [Wen et al., NeurlPS 2016]




R
Pruning Based On Similarity And Clustering S

* Remove the redundancy across weights or filters in the network.

Initial network
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Wu T, Song C, Zeng P, Xia C. Cluster-Based Structural Redundancy Identification for Neural Network Compression. Entropy. 2023



Prunning
Granularity
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| Pruning at Different Granularities

A simple example of 2D weight matrix

. Preserved

Pruned

Fine-grained/Unstructured Coarse-grained/Structured
* More flexible pruning index choice * Less flexible pruning index choice (a subset
* Hard to accelerate (irregular) of the fine-grained case)

 Easy to accelerate (just a smaller matrix!)



| Pruning at Different Granularities

The case of convolutional layers

 The weights of convolutional layers have 4 dimensions [c,, ¢;, k;,, k,,]:
« ¢;: input channels (or channels)

« (C,: output channels (or filters)
* kj: kernel size height

 k,: kernel size width

 The 4 dimensions give us more choices to select pruning granularities

N0



| Pruning at Different Granularities

. k, =3
The case of convolutional layers - n
| - B Preserved [
« Some of the commonly used pruning granularities o W
Pruned >
Irregular < > Reqular

B

Fine-grained Pattern-based Vector-level Kernel-level Channel-level
Pruning Pruning Pruning Pruning Pruning
like Tetris :)

Exploring the granularity of sparsity in convolutional neural networks [Mao et al., CVPR-W]




| Pruning at Different Granularities

Let’s look into some cases
 Pattern-based Pruning: N:M sparsity

Dense Matrix

Accelerating Inference with Sparsity Using the NVIDIA Ampere Architecture and NVIDIA TensorRT

N0



| Pruning at Different Granularities

Let’s look into some cases
 Pattern-based Pruning: N:M sparsity

Dense Matrix 2:4 Sparse Matrix

Accelerating Inference with Sparsity Using the NVIDIA Ampere Architecture and NVIDIA TensorRT

N0




| Pruning at Different Granularities

Let’s look into some cases

 Pattern-based Pruning: N:M sparsity
* N:M sparsity means that in each contiguous M elements, N of them is pruned
* A classic case is 2:4 sparsity (50% sparsity)

Dense Matrix 2:4 Sparse Matrix

Accelerating Inference with Sparsity Using the NVIDIA Ampere Architecture and NVIDIA TensorRT

N0




| Pruning at Different Granularities

Let’s look into some cases

 Pattern-based Pruning: N:M sparsity

* N:M sparsity means that in each contiguous M elements, N of them is pruned
» A classic case is 2:4 sparsity (50% sparsity)

» |tis supported by NVIDIA's Ampere GPU Architecture, which delivers up to 2x speed up

non-zero 2-bit

values indices
Dense Matrix 2:4 Sparse Matrix Compressed Matrix

Accelerating Inference with Sparsity Using the NVIDIA Ampere Architecture and NVIDIA TensorRT

N0
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| Finding Pruning Ratios Rl

Analyze the sensitivity of each layer

* We need different pruning ratios for each layer since different layers have different sensitivity
 Some layers are more sensitive (e.q., first layer)
 Some layers are more redundant




| Finding Pruning Ratios
Analyze the sensitivity of each layer

* The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)

 Pick alayer L; in the model
o Prune the layer L; with pruning ratio r € {0,0.1,0.2,...,0.9} (or other strides)
* Observe the accuracy degrade AACC? for each pruning ratio

Accuracy (%)

100 |

86
72
58
44

30

10%

The higher pruning rate
LO The more accuracy loss

20% 30% 40% 50% 60% 70% 80%
Pruning Rate (Percentage of Weights Pruned Away)

90%

N0

AAcc



| Finding Pruning Ratios
Analyze the sensitivity of each layer
* The process of Sensitivity Analysis (*VGG-11 on CIFAR-10 dataset)
 Pick alayer L; in the model
o Prune the layer L; with pruning ratio r € {0,0.1,0.2,...,0.9} (or other strides)

« Observe the accuracy degrade AAccil for each pruning ratio
* Repeat the process for all layers

100|
g o BN
3‘ 72
o
S 58 LO L1
o o L2 L3
< 4| 514 oL5
30

10% 20% 30% 40% 50% 60% 70% 80% 90%
Pruning Rate (Percentage of Weights Pruned Away)

N0




| Finding Pruning Ratios
Analyze the sensitivity of each layer

* The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
 Pick a layer L; in the model

o Prune the layer L; with pruning ratio r € {0,0.1,0.2,...,0.9} (or other strides)

« (Observe the accuracy degrade AACC? for each pruning ratio
* Repeat the process for all layers

« Pick a degradation threshold 7" such that the overall pruning rate is desired

100 |
L 8 e N
> 72 threshold T
[1y]
5 58 LO L1
o o L2 L3
< 4\ 514 oL5
30

10% 20% 30% 40% 50% 60% 70% 80% 90%
Pruning Rate (Percentage of Weights Pruned Away)

N0
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| Finding Pruning Ratios
Analyze the sensitivity of each layer
* The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
 Pick alayer L; in the model
o Prune the layer L; with pruning ratio r € {0,0.1,0.2,...,0.9} (or other strides)

« QObserve the accuracy degrade AACC? for each pruning ratio
* Repeat the process for all layers

* Pick a degradation threshold 7" such that the overall pruning rate is desired

100 |
S
> 72 threshold T B\
m 1 1 1
5 58 Lo o L1 i R
3 o Lo L3 Pruning rates: : b
< 4| o514 oL5 Lo
i : L ;

10% 20% 30% 40% 50% 60% 70% 80% 90%
Pruning Rate (Percentage of Weights Pruned Away)
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The lottery ticket hypothesis

* Within a large, randomly-initialized network, there exists a much smaller
subnetwork that, if trained in isolation from the beginning with the same initial
weights, can reach comparable performance to the full network.

T
i TuTJCKET .

Bamdls i‘-k L N

* That’s what they call a ‘winning ticket’

l

Frankle, J., & Carbin, M. (2018). The lottery ticket hypothesis: Finding sparse, trainable neural networks.



The lottery ticket hypothesis

1. Initialize network witl'{ﬁ,_] 2. Train network and get 8, 3. Pruning p% of 6, 4. Initialize network

Frankle, J., & Carbin, M. (2018). The lottery ticket hypothesis: Finding sparse, trainable neural networks.
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