

Model Compression and Pruning Techniques

Fatemeh Rahimian

RISE Research Institutes of Sweden fatemeh.rahimian@ri.se

Outline

Model compression: a brief introduction

- Pruning
- Quantization
- Knowledge Distillation
- Low Rank Factorization

Pruning in more details

- Pruning criteria
- Pruning granularity
- Pruning ratio
- When to prune

What Is Model Compression?

- Reducing the size of a model
- without significantly compromising its predictive accuracy.

Why Model Compression?

Deep learning models are compute- and memory- intensive.

Edge devices have limited power, memory, and compute.

Model compression enables AI on-device

Applications: AloT, wearables, autonomous drones.

Pruning

Model Compression Techniques

Quantization

Konwledge distillation

Low rank factorization

What Is Pruning?

Systematically removing less significant parameters of a NN

What Is Quantization?

- Reduce the total number of bits required to represent each parameter
 - usually converting floating-point numbers into integers

What Is Knowledge Distillation?

- Transferring experience from a largescale model (teacher) to a smaller-scale model (student)
 - extracting the informative aspects of a large model's behaviour
 - instilling this knowledge into a smaller model

What Is Low-rank Factorization?

Decomposing large, dense weight matrices into smaller, lower-rank matrices.

Pruning in more details

What Is Pruning?

Also referred to as "Network Sparsification"

- Selective removal of network parameters (weights and neurons)
 - those that contribute the least to the network's output

Pruning happens in human brain

In general, we could formulate the pruning as follows:

$$\label{eq:wp} \begin{split} \arg\min_{\mathbf{W}_P} L(\mathbf{x}; \mathbf{W}_P) \\ \text{subject to} \\ \|\mathbf{W}_p\|_0 < N \end{split}$$

- L represents the objective function for neural network training;
- \mathbf{x} is input, \mathbf{W} is original weights, \mathbf{W}_P is pruned weights;
- $\|\mathbf{W}_p\|_0$ calculates the #nonzeros in W_P , and N is the target #nonzeros.

Non-zero values (preserved)

Zero-values (pruned)

Let's see a demo!

Refer to the notebook

```
class Net(nn.Module):
    def __init__(self):
    super(Net, self).__init__()
    self.conv1 = nn.Conv2d(1, 32, 3, 1) # 1 x 32 x 3 x 3 = 288 parameters
    self.conv2 = nn.Conv2d(32, 64, 3, 1) # 32 x 64 x 3 x 3=18,432 parameters
    self.dropout1 = nn.Dropout(0.25)
    self.dropout2 = nn.Dropout(0.5)
    self.fc1 = nn.Linear(9216, 128) # 9216 x 128 = 1,179,648 parameters
    self.fc2 = nn.Linear(128, 10) # 128 x 10 = 1,280 parameters
```

123456789

Pruning Ratio (Parameters Pruned Away)

Pruning Ratio (Parameters Pruned Away)

RI. SE

Pruning the NeuralTalk LSTM does not hurt image caption quality.

Baseline: a basketball player in a white uniform is playing with a ball.

Pruned 90%: a basketball player in a white uniform is playing with a basketball.

Baseline: a brown dog is running through a grassy field.

Pruned 90%: a brown dog is running through a grassy area.

Baseline: a man is riding a surfboard on a wave.

Pruned 90%: a man in a wetsuit is riding a wave on a beach.

Baseline: a soccer player in red is running in the field.

Pruned 95%: a man in a red shirt and black and white black shirt is running through a field.

- Make NNs smaller by removing connections and neurons
 - Which connections and neurons?
 - With what granularity?
 - How many?
 - When?

Pruning Criteria

A heuristic pruning criterion

- Magnitude-based pruning considers weights with larger absolute values are more important than other weights.
 - · For element-wise pruning,

$$Importance = |W|$$

Example

A heuristic pruning criterion

- Magnitude-based pruning considers weights with larger absolute values are more important than other weights.
 - For row-wise pruning, the L1-norm magnitude can be defined as,

Importance =
$$\sum_{i \in S} |w_i|$$
, where $\mathbf{W}^{(S)}$ is the structural set S of parameters \mathbf{W}

Example

Weight

Importance

Pruned Weight

A heuristic pruning criterion

- Magnitude-based pruning considers weights with larger absolute values are more important than other weights.
 - For row-wise pruning, the L2-norm magnitude can be defined as,

Importance =
$$\sqrt{\sum_{i \in S} |w_i|^2}$$
, where $\mathbf{W}^{(S)}$ is the structural set S of parameters \mathbf{W}

Example

A heuristic pruning criterion

- Magnitude-based pruning considers weights with larger absolute values are more important than other weights.
- Magnitude is also known as L_p -norm defined as,

$$\|\mathbf{W}^{(S)}\|_p = \left(\sum_{i \in S} |w_i|^p\right)^{\frac{1}{p}}$$
, where $\mathbf{W}^{(S)}$ is a structural set of parameters

Example

Weight

Importance

Pruned Weight

Pruning Based On Similarity And Clustering

• Remove the redundancy across weights or filters in the network.

Prunning Granularity

A simple example of 2D weight matrix

Fine-grained/Unstructured

- More flexible pruning index choice
- Hard to accelerate (irregular)

Coarse-grained/Structured

- Less flexible pruning index choice (a subset of the fine-grained case)
- Easy to accelerate (just a smaller matrix!)

RI. SE

The case of convolutional layers

- The weights of convolutional layers have 4 dimensions $[c_o, c_i, k_h, k_w]$:
 - c_i : input channels (or channels)
 - c_o : output channels (or filters)
 - k_h : kernel size height
 - k_w : kernel size width
- The 4 dimensions give us more choices to select pruning granularities

The case of convolutional layers

Some of the commonly used pruning granularities

like Tetris:)

Let's look into some cases

Pattern-based Pruning: N:M sparsity

Dense Matrix

Let's look into some cases

Pattern-based Pruning: N:M sparsity

Let's look into some cases

- Pattern-based Pruning: N:M sparsity
 - N:M sparsity means that in each contiguous M elements, N of them is pruned
 - A classic case is 2:4 sparsity (50% sparsity)

Let's look into some cases

- Pattern-based Pruning: N:M sparsity
 - N:M sparsity means that in each contiguous M elements, N of them is pruned
 - A classic case is 2:4 sparsity (50% sparsity)
 - It is supported by NVIDIA's Ampere GPU Architecture, which delivers up to 2x speed up

Pruning Ratio

- We need different pruning ratios for each layer since different layers have different sensitivity
 - Some layers are more sensitive (e.g., first layer)
 - Some layers are more redundant

RI. SE

- The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
 - Pick a layer L_i in the model
 - Prune the layer L_i with pruning ratio $r \in \{0,0.1,0.2,...,0.9\}$ (or other strides)
 - Observe the accuracy degrade $\Delta \mathsf{Acc}^i_r$ for each pruning ratio

Pruning Rate (Percentage of Weights Pruned Away)

RI. SE

- The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
 - Pick a layer L_i in the model
 - Prune the layer L_i with pruning ratio $r \in \{0,0.1,0.2,...,0.9\}$ (or other strides)
 - Observe the accuracy degrade ΔAcc_r^i for each pruning ratio
 - Repeat the process for all layers

Pruning Rate (Percentage of Weights Pruned Away)

RI. SE

- The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
 - Pick a layer L_i in the model
 - Prune the layer L_i with pruning ratio $r \in \{0,0.1,0.2,...,0.9\}$ (or other strides)
 - Observe the accuracy degrade ΔAcc_r^i for each pruning ratio
 - Repeat the process for all layers
 - ullet Pick a degradation threshold T such that the overall pruning rate is desired

Pruning Rate (Percentage of Weights Pruned Away)

RI. SE

- The process of Sensitivity Analysis (* VGG-11 on CIFAR-10 dataset)
 - Pick a layer L_i in the model
 - Prune the layer L_i with pruning ratio $r \in \{0,0.1,0.2,...,0.9\}$ (or other strides)
 - Observe the accuracy degrade ΔAcc_r^i for each pruning ratio
 - Repeat the process for all layers
 - Pick a degradation threshold T such that the overall pruning rate is desired

Pruning Rate (Percentage of Weights Pruned Away)

When To Prune?

When To Prune?

The lottery ticket hypothesis

 Within a large, randomly-initialized network, there exists a much smaller subnetwork that, if trained in isolation from the beginning with the same initial weights, can reach comparable performance to the full network.

That's what they call a 'winning ticket'

The lottery ticket hypothesis

Takeaways

- Cheng, H., Zhang, M., & Shi, J. Q. (2024). A survey on deep neural network pruning: Taxonomy, comparison, analysis, and recommendations. *IEEE Transactions on Pattern Analysis and Machine Intelligence*.
- Frankle, J., & Carbin, M. (2018). The lottery ticket hypothesis: Finding sparse, trainable neural networks. *arXiv preprint arXiv:1803.03635*.
- Han, S., Pool, J., Tran, J., & Dally, W. J. (2015). Learning both weights and connections for efficient neural network.
 Advances in Neural Information Processing Systems, 28.
- Mao, H., Han, S., Pool, J., & Dally, W. J. (2017). Exploring the granularity of sparsity in convolutional neural networks. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops*.
- Vadera, S., & Ameen, S. (2022). Methods for pruning deep neural networks. *IEEE Access*, *10*, 63280–63300.
- Wu, T., Song, C., Zeng, P., & Xia, C. (2023). Cluster-based structural redundancy identification for neural network compression. *Entropy*.
- TinyML and Efficient Deep Learning Computing, MIT Course, Fall 2024. Retrieved from https://efficientml.ai

Thank you!