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Outline

• Pruning
• Quantization
• Knowledge Distillation
• Low Rank Factorization

Model compression: a brief introduction

• Pruning criteria
• Pruning granularity
• Pruning ratio
• When to prune

Pruning in more details



What Is Model Compression?

• Reducing the size of a model 

• without significantly compromising 
its predictive accuracy. 



Why Model Compression?

Deep learning models 
are compute- and 
memory- intensive.

Edge devices have 
limited power, memory, 
and compute.

Model compression 
enables AI on-device

Applications: AIoT, 
wearables, 
autonomous drones.





Model 
Compression 
Techniques

Pruning

Quantization

Konwledge distillation

Low rank factorization



What Is Pruning?

• Systematically removing less significant parameters of a NN



What Is Quantization?

• Reduce the total number of bits required to represent each parameter 
• usually converting floating-point numbers into integers

 



What Is Knowledge Distillation?

• Transferring experience from a largescale model (teacher) to a smaller-scale model (student)
• extracting the informative aspects of a large model’s behaviour
• instilling this knowledge into a smaller model



What Is Low-rank Factorization?

Decomposing large, dense weight matrices into smaller, lower-rank matrices.



Pruning 
in more details



What Is Pruning?

• Also referred to as “Network Sparsification”

• Selective removal of network parameters (weights and neurons)
•  those that contribute the least to the network’s output



Pruning happens in human brain 
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per neuron
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Neural Network Pruning

Non-zero values (preserved) Zero-values (pruned)



Let’s see a demo!

• Refer to the notebook

class Net(nn.Module):

def __init__(self):

super(Net, self).__init__()

self.conv1 = nn.Conv2d(1, 32, 3, 1) # 1 x 32 x 3 x 3 = 288 parameters
self.conv2 = nn.Conv2d(32, 64, 3, 1) # 32 x 64 x 3 x 3=18,432 paramters
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128) # 9216 x 128 = 1,179,648 parameters
self.fc2 = nn.Linear(128, 10) # 128 x 10 = 1,280 parameters

https://colab.research.google.com/drive/1K-uJO15JKNpXEf1YzyI2idwNWDX5EfHr#scrollTo=fY5IOTRzGcyt


Neural network pruning



Neural network pruning



Neural network pruning



Neural network pruning





Neural Network Pruning

• Make NNs smaller by removing 
connections and neurons

• Which connections and neurons?
• With what granularity?
• How many?
• When?



Pruning Criteria











Pruning Based On Similarity And Clustering

• Remove the redundancy across weights or filters in the network.

Wu T, Song C, Zeng P, Xia C. Cluster-Based Structural Redundancy Identification for Neural Network Compression. Entropy. 2023



Prunning 
Granularity

















Pruning Ratio













When To Prune?



When To Prune?



• Within a large, randomly-initialized network, there exists a much smaller 
subnetwork that, if trained in isolation from the beginning with the same initial 
weights, can reach comparable performance to the full network.

• That’s what they call a ‘winning ticket’

The lottery ticket hypothesis

Frankle, J., & Carbin, M. (2018). The lottery ticket hypothesis: Finding sparse, trainable neural networks. 



The lottery ticket hypothesis

Frankle, J., & Carbin, M. (2018). The lottery ticket hypothesis: Finding sparse, trainable neural networks. 



Takeaways
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Thank you!
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