
Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not
necessarily reflect those of the European Union. Neither the European Union nor the granting authority can be held
responsible for them.

DELIVERABLE D1.4

DEMONSTRATOR OF NEW MECHANISMS FOR

EDGE ORCHESTRATION, ENERGY-EFFICIENCY

AND ML WORKFLOWS

Project number: 101079214
Project name: Twinning action for spreading excellence in Artificial Intelligence of Things
Project acronym: AIoTwin
Call: HORIZON-WIDERA-2021-ACCESS-03
Topic: HORIZON-WIDERA-2021-ACCESS-03-01
Type of action: HORIZON Coordination and Support Actions
Granting authority: European Research Executive Agency

© Copyright 2024, Members of the AIoTwin Consortium

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 2

DOCUMENT CONTROL

Deliverable No. D1.4

Title Demonstrator of New Mechanisms for Edge Orchestration, Energy-
Efficiency and ML Workflows

Lead Editor Mislav Has

Type Report

Dissemination Level PU/SEN

Work Package WP1

Due Date 31.10.2024

AUTHOR(S)

Name Partner e-mail

Mario Kušek UNIZG-FER mario.kusek@fer.hr

Ivana Podnar Žarko UNIZG-FER ivana.podnar@fer.hr

Ivan Čilić UNIZG-FER ivan.cilic@fer.hr

Mislav Has UNIZG-FER mislav.has@fer.hr

Ana Petra Jukić UNIZG-FER ana-petra.jukic@fer.hr

Katarina Vuknić UNIZG-FER katarina.vuknic@fer.hr

Fehmi Ben Abdesslem RISE fehmi.ben.abdesslem@ri.se

AMENDMENT HISTORY
Version Date Author Description/Comments

0.01 20-10-2024 Mario Kušek Initial structure

0.02 02-10-2024 Ana Petra Jukić,
Katarina Vuknić

Energy consumption of different devices during
model training in a federated learning
environment

0.03 04-11-2024 Ivan Kralj Comprehensive analysis of the benefits and
drawbacks of Spatio-Temporal Graph Neural
Networks trained in semi-decentralized
environment

0.04 06-11-2024 Mislav Has Power consumption experiment of WebAssembly
runtime on Raspberry PI devices

0.05 21-11-2024 Ivan Kralj Assessment of the practical applicability of semi-
decentralized ST-GNNs for real-world deployment
scenarios and future directions

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 3

0.06 4-12-2024 Ivan Čilić Framework for adaptive orchestration of HFL
pipelines and Reconfiguration validation
algorithm (RVA)

0.07 6-12-2024 Ivan Čilić Describing experimental evaluation of the
framework and RVA

0.08 9-12-2024 Katarina Vuknić

Ana Petra Jukić

Results of performance measurements of FL with
edge devices

0.09 9-12-2024 Mislav Has Introduction, Executive Summary and Conclusion

0.10 9-12-2024 Mario Kušek Internal review

0.11 10-12-2024 Mislav Has Version sent to Fehmi Ben Abdesslem for internal
review

0.12 12-12-2024 Fehmi Ben
Abdesslem

Reviewing and writing comments and suggestions

0.13 18-12-2024 Ivan Kralj Applied reviewer comments on spatio-temporal
GNNs

0.14 18-12-2024 Ivan Čilić Applied reviewer comments on adaptive
orchestration of HFL pipelines

1.0 03-01-2025 Ivana Podnar
Žarko

Final version for submission.

Disclaimer
The information in this document is subject to change without notice. The Members of the AIoTwin Consortium make
no warranty of any kind regarding this document, including, but not limited to, the implied warranties of
merchantability and fitness for a particular purpose. The Members of the AIoTwin Consortium shall not be held liable
for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the
furnishing, performance, or use of this material.

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 4

Table of Contents
Executive Summary ... 6

1 Introduction .. 7

1.1 Deliverable Context and Description ... 7

1.2 Deliverable Outline .. 7

2 Adaptive Orchestration of Hierarchical Federated Learning Pipelines ... 8

2.1 Reconfiguration validation .. 8

2.1.1 Motivation ... 8

2.1.2 Reconfiguration validation algorithm (RVA) ... 9

2.2 Framework for adaptive orchestration of hierarchical federated learning pipelines 11

2.3 Experimental evaluation .. 12

2.3.1 Evaluation target: framework performance ... 12

2.3.2 Evaluation target: RVA .. 14

3 Spatio-Temporal Graph Neural Networks .. 19

3.1 Traditional Federated Learning ... 20

3.2 Server-free Federated Learning... 20

3.3 Gossip Learning ... 20

3.4 Experimental Setup ... 21

3.4.1 Datasets ... 22

3.4.2 Evaluation Metrics... 23

3.5 Experimental Results ... 23

3.5.1 Comparison of training setups .. 23

3.5.2 Cloudlet metric analysis .. 24

3.5.3 Analysis of semi-decentralized overheads .. 25

4 Measuring energy consumption ... 28

4.1 FL with edge devices .. 28

4.2 WebAssembly runtime on Raspberry PI .. 36

4.2.1 Project gpio-http ... 37

4.2.2 Project matrix .. 38

4.2.3 Project nn-module... 39

5 Conclusion ... 40

6 Acronyms .. 41

7 List of Figures .. 41

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 5

8 List of Tables ... 42

9 References .. 43

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 6

Executive Summary

This deliverable presents a demonstrator of advanced mechanisms for adaptive orchestration, energy
efficiency, and machine learning (ML) workflows within federated learning (FL) environments. The
demonstrator consists of the following three parts: adaptive orchestration of hierarchical FL pipelines,
evaluation of spatio-temporal graph neural networks in FL, and energy consumption and performance
evaluation in FL setups and WebAssembly runtimes on edge devices. The first part focuses on optimizing
FL workflows through the development of the Reconfiguration Validation Algorithm (RVA) and a
framework for adaptive orchestration, showing improvements in efficiency and flexibility. The second part
explores spatio-temporal graph neural networks and gossip learning for decentralized FL, with
experimental results comparing training setups and evaluating cloudlet performance. The third part
includes energy consumption measurement on edge devices (Jetson AGX Orin, Jetson Nano, and
Raspberry Pi 4) in FL setups and performance evaluation of WebAssembly runtimes (Wasmtime, Wasmer,
WasmEdge) for computational tasks like matrix multiplication and ML inference, offering insights into
energy optimization and runtime efficiency. Together, these parts demonstrate the integration of
orchestration, energy efficiency, and performance optimization for ML workflows in edge computing,

providing valuable insights for the AIoTwin orchestration middleware.

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 7

1 Introduction

1.1 Deliverable Context and Description

Work Package 1 (WP1) comprises the tasks and activities of the AIoTwin Joint Research Project, which
incorporates the contributions and expertise of all AIoTwin partners. In this joint research, we are focusing
on the following goals:

• Develop a data-driven orchestration middleware for energy-efficient IoT supporting ML
workflows.
• Investigate the mechanisms for orchestration of containers across the edge-to-cloud continuum.
• Run and test the middleware on the available infrastructure of all consortium partners.

In the preceding deliverable, D1.1, we presented the use cases, system requirements, and general
architecture of the AIoTwin data-driven orchestration middleware. Subsequently, in deliverable D1.2, we
introduced a demonstration of relevant state-of-the-art mechanisms for edge orchestration, energy
efficiency, and machine learning workflows. Building upon these, D1.3 focused on the practical
implementation of the outlined requirements and proposed architecture, with key decisions regarding
federated learning frameworks and orchestration tools informed by the demonstrator's conclusions.
This deliverable, D1.4, advances the AIoTwin framework with novel mechanisms for efficiency and
flexibility of FL workflows by focusing on three key areas: the adaptive orchestration of hierarchical
federated learning workflows, including reconfiguration validation and experimental evaluations, the
exploration of spatio-temporal graph neural networks in decentralised setups, and the measurement of
energy consumption in FL and WebAssembly runtimes on edge devices.

1.2 Deliverable Outline

This document is organized as follows. Section 2 focuses on the adaptive orchestration of hierarchical FL

pipelines, including reconfiguration validation, the orchestration framework, and experimental

evaluations. Section 3 explores spatio-temporal graph neural networks, detailing traditional, server-free,

and gossip learning setups, along with their experimental evaluation. Section 4 examines energy

consumption measurements, with a focus on FL on edge devices and WebAssembly runtime

implementations. Section 5 concludes the deliverable, while Section 6 provides a list of acronyms. Finally,

the lists of figures, tables, and references are presented in Sections 7, 8, and 9, respectively.

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 8

2 Adaptive Orchestration of Hierarchical Federated Learning Pipelines

Contrary to traditional FL where there is a single global aggregator (GA) typically residing in the cloud,

hierarchical federated learning (HFL) introduces local aggregators (LAs) at the edge which are used as

intermediary aggregators between the clients and global aggregator residing typically in the cloud.

In a typical HFL setup, an ML engineer defines an HFL task that runs within an HFL pipeline in the

Computing Continuum (CC1). The HFL task is defined with the following inputs: (i) an initial ML model, (ii)

training parameters, and (iii) the orchestration objective. The initial ML model serves as the starting point

from which all clients begin their training during the initialization phase of the pipeline. The training

parameters include batch size, learning rate, etc. An orchestration objective is defined on a case-by-case

basis, for example to either optimize the model's performance within a predefined cost budget, e.g., a

specified communication cost budget, or to minimize the cost while achieving a specific target, such as a

target level of model accuracy or loss. Other HFL performance parameters can be used when defining the

orchestration objectives and such diversity should be supported by an HFL orchestrator.

The dynamic CC environment where HFL operates suggests that changes will occur during the execution

of an HFL pipeline, such as nodes joining and leaving the pipeline, node resource fluctuations, or network

disruptions. Such events can impact the performance of a running HFL pipeline. For example, a client

becoming unavailable can introduce degradation of the ML model performance, or a network change can

increase the communication cost of the pipeline, and this can faster deplete a potential cost budget

defined for a HFL task. Responding to such events requires an adaptive orchestration mechanism that

maintains the HFL pipeline deployed with the best HFL configuration for the given state of the CC. Carrying

out the appropriate reconfigurations is however non-trivial, particularly given that applying a new

configuration at runtime is not guaranteed to provide a better ML model performance, as we show next.

2.1 Reconfiguration validation

2.1.1 Motivation
Let us consider a scenario where an HFL pipeline is deployed with two clusters, each of them consisting

of five nodes. At round 𝑅𝑟𝑒𝑐𝑜𝑛𝑓 a new node joins the CC which holds data available for training. In Scenario

A the node that joins holds a high number of dataset samples and introduces lower communication cost

per global round, while in Scenario B the joining node has a small dataset and introduces higher

communication cost per global round.

Figure 1 and Figure 2 show the effect of reconfiguration when the objective of an HFL task is to provide

the best model in terms of accuracy within the available communication cost budget. The upper graphs

show how accuracy changes over global rounds, while the lower graphs depict cost changes over global

rounds. The performance of the new configuration is shown with a yellow line. Two scenarios

1 Computing Continuum is a multi-layered infrastructure that spans from IoT and edge devices to more powerful
intermediate nodes, such as edge servers, and finally to the cloud infrastructure. The continuum enables seamless
data processing and service delivery across different layers, from the edge, where the data is generated, to the cloud,
where computational power and large-scale data management are available.

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 9

demonstrate examples when a reconfiguration introduces either a model improvement (Scenario A) or a

model degradation (Scenario B). On one hand in Scenario A, the final model accuracy was higher with the

new configuration when communication cost budget is reached, meaning that the reconfiguration has

indeed introduced an improvement of the model performance. On the other hand, in Scenario B, the

original configuration would reach a higher accuracy compared to the new configuration within the same

communication cost budget, which means that the applied reconfiguration introduced performance

degradation. Thus, it would be better not to include the new node with a small dataset into the pipeline

in Scenario B.

Figure 1. Reconfiguration effect: scenario A

Figure 2. Reconfiguration effect: scenario B

In both scenarios, the new configuration improves the model performance; however, in Scenario B the

new configuration introduced a slower performance improvement, since the new node held a smaller

dataset, and the cost per-round was much higher, resulting in the cost budget being quickly exceeded.

2.1.2 Reconfiguration validation algorithm (RVA)
A HFL pipeline reconfiguration can introduce performance degradation in terms of model performance or

increased cost. For this reason, we present a reactive reconfiguration validation approach named

Reconfiguration Validation Algorithm (RVA) to identify such situations. The RVA checks the

reconfiguration status after a specific number of global rounds post-reconfiguration, denoted as the

validation window W, and reverts the pipeline to the original configuration if needed. Figure 3 shows an

example of the sequential flow of events during reconfiguration validation and depicts how model

accuracy changes during HFL global rounds. An event occurs at moment 𝑅𝑟𝑒𝑐𝑜𝑛𝑓and the reconfiguration

is performed at the end of the current global round. After that, the orchestrator waits for W rounds until

validation round 𝑅𝑣𝑎𝑙 when it performs reconfiguration validation to check whether the pipeline should

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 10

be reverted to the original configuration. In this example, the validation decision is based on the

observation that the latest reconfiguration introduces model performance degradation, and the original

configuration is reverted.

Figure 3. RVA: execution flow

The decision on whether a configuration introduces model performance improvement or degradation is

made based on the prediction of the future behaviour of the original and new configuration. This

prediction is made through regression based on the actual model performance values. An example of

regression functions used for performance prediction is shown in Figure 4.

We can see that the prediction of the original configuration is made based on the performance values

before reconfiguration, and the prediction of the new configuration is made based on the values obtained

during the validation window. After calculating the regression functions for both configurations, the

orchestrator predicts the performance value of the round when the budget is exceeded. If the predicted

value with the original configuration is higher than the one for the new configuration, the original

configuration is reverted.

Figure 4. RVA: performance prediction

A
cc

u
ra

cy

Global round

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 11

More details on the algorithm implementation and calculation of reconfiguration cost can be found in the

following paper (currently under review, submitted to a conference call for papers) [1].

The adaptive orchestration of HFL pipelines with the developed AIoTwin orchestration middleware which

implements the RVA was demonstrated to the audience of the 2nd AIoTwin Summer School held in

Dubrovnik in September 2024.

2.2 Framework for adaptive orchestration of hierarchical federated learning pipelines

The “architecture for adaptive orchestration of FL workflows” proposed in report D1.3 (Figure 1) is

implemented as an extension of Kubernetes, an industry-standard container orchestration tool, with the

focus on orchestrating HFL pipelines. Hence, the implementation, named framework for adaptive

orchestration of HFL pipelines, supports HFL components running in containers. Figure 5 shows how the

framework is built on top of the Kubernetes tool.

Figure 5. Framework for adaptive orchestration of HFL pipelines

The implementation details about the framework are reported in deliverable D1.3 and are now extended

with an implementation of reconfiguration validation. The framework currently supports reconfigurations

triggered by events when a node state changes (nodes joining or leaving an HFL pipeline) and

orchestration objectives defined in terms of a limited communication cost budget. The reconfiguration

validation algorithm is executed after W rounds, a parameter that can be configured by a user. For the

prediction of model performance, we currently use logarithmic regression, as it has shown to be the most

suitable for predicting the behaviour of model accuracy, which grows quickly in the beginning and then

slows down.

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 12

2.3 Experimental evaluation

To evaluate the orchestration framework and RVA, we conducted experiments on a K3s cluster, a

lightweight distribution of Kubernetes [1]. We deployed a cluster of nine (from 9 up to 14) nodes2: one

controller and eight (from 8 up to 13) worker nodes. All the nodes were virtual machines running Ubuntu

Server 22.04 with 2 CPU cores and 4 GB of RAM.

All experiments consisted of training an untrained CNN model on a CIFAR-10 dataset. The CNN

architecture used has two convolutional layers (6 and 16 channels, both having a kernel size of 5, a stride

of 1 and padding 0) each followed by a ReLU activation function and a 2x2 max pooling. After flattening

the output of the last layer, the model includes two fully connected layers with 120 and 84 units

respectively, both using ReLU activation functions. Finally, the model ends with an output layer of 10 units,

for each class in CIFAR-10.

The dataset on each client was specified for each experiment separately to show the difference in

performance when having different data distributions. All the experiments used communication as the

cost parameter.

The step-by-step instructions on how to run these experiments is given in the following repository:

https://github.com/AIoTwin/fl-orchestrator/tree/icmlcn.

2.3.1 Evaluation target: framework performance
The first evaluation scenario evaluates the performance of the implemented framework. Therefore, it

evaluates the orchestrator deployment on the actual infrastructure, i.e., each node is hosting one FL

service, either a client, LA, or GA. The network cost between the nodes and the data distribution on the

nodes are shown in Figure 6. Data distributions are depicted per each client to denote a class label and

number of samples of this class.

Figure 6. Deployed topology to evaluate the framework

2 The total number of applied nodes depends on the experimental setup.

GA

LA LA

clients

https://github.com/AIoTwin/fl-orchestrator/tree/icmlcn

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 13

We can see that the clusters are balanced in terms of data distribution, i.e., both clusters cover the same

classes from 0 to 8, and contain the same number of samples per class. Node n9 is coloured in green

because it was the node that has left the running pipeline and then rejoined the pipeline during the

experiment. Table 1 shows the evaluation parameters for the first experiment. The cost was defined with

a total budget and the clustering of nodes was created so that clusters minimize the communication cost.

Table 1. Performance evaluation: configuration parameters

Cost Configuration Type Total Budget

Communication Budget 50 000

Configuration Strategy minCommCost

Local Epochs 2

Local Rounds 2

In the beginning, all the nodes from topology in Figure 6 were available and the FL pipeline was started.

After 10 global rounds node n9 left the system, which resulted in node removal from the pipeline. Then,

after round 20 node n9 rejoined the system which resulted in reconfiguring back to the original

configuration. Note that for this evaluation RVA was disabled as this experiment is evaluating the

framework performance. Figure 7 and Figure 8 show how accuracy and communication cost were

changing over time.

Figure 7. Performance evaluation: accuracy

Figure 8. Performance evaluation: total cost

Figure 9. Performance evaluation: cost per round

We can observe that after round 10 when node n9 was removed, there was a significant drop in

performance, which was then improved after round 20 when the node rejoined. Regarding the

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 14

communication cost, we can see that the training stops when the budget was reached (Figure 8). Also, in

Figure 9 we can observe that the cost per global round dropped when n9 was removed from the pipeline

which is expected as there is one less model update in the pipeline. Additionally, there is a slight increase

in the cost between rounds 20 and 21 because now the reconfiguration change cost occurs due to the

fact that n9 needs to download the latest model from its parent aggregator n2. Note that there is no

reconfiguration change cost after round 10 because removing a node doesn't generate communication

cost.

Finally, Table 2 shows the results of the performance evaluation of our framework. The results show that

the FL orchestrator introduces minimal computing overhead to the system because it only runs the

configuration model and subscribes to the events in the Kubernetes API. Also, the results show that the

orchestrator needs significantly more time to detect a new node joining a pipeline than to detect node

removal. This is a limitation of K3s as it needs some time to detect the “Ready” state of a node. However,

it quickly detects node removal, which is more important as it can act quickly to run the pipeline with the

optimal configuration without the removed node.

Table 2. Performance evaluation: benchmark results

FL Orchestrator CPU Usage ≈ 0.15 cores

FL Orchestrator Memory Usage ≈ 15 MB

Node Joining Reaction Time ≈ 15 s

Node Leaving Reaction Time ≈ 500 ms

2.3.2 Evaluation target: RVA
Next, we evaluate the RVA with two types of data distribution on client nodes: IID and non-IID. In the IID

setup, all clients had an equal data distribution, containing all classes, and the equal number of samples

per class. In the non-IID setup, each client had two classes in its dataset and the number of samples per

class was equal. Table 3 shows configuration parameters used in the evaluation. The reconfiguration

trigger event was a new node (or multiple nodes) joining the system, the reconfiguration round 𝑅𝑟𝑒𝑐𝑜𝑛𝑓

was set to 10, and the validation window W was set to 5.

Table 3. RVA evaluation: configuration parameters

Cost Configuration Type Total Budget

Communication Budget 100 000

Configuration Strategy minCommCost

Local Epochs 2

Local Rounds 2

Reconfiguration trigger event New Node(s)

𝑅𝑟𝑒𝑐𝑜𝑛𝑓 10

W 5

2.3.2.1 RVA exp. #1: IID setup with performance degradation

Figure 10 shows the environmental setup of the experiment showing performance degradation in the IID

environment. At 𝑅𝑟𝑒𝑐𝑜𝑛𝑓 two nodes n10 and n11 join the system and bring in small datasets (the changes

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 15

are coloured in green). The nodes are attached to clusters of n2 and n3, respectively. The small dataset

refers to the dataset with all 10 classes and 100 samples per class.

Figure 10. RVA exp. #1: environmental setup

The evaluation results show the trend of accuracy and total cost over global rounds for two scenarios:

with RVA and without using RVA. We can see in Figure 11 that there is no significant improvement in

performance during the reconfiguration validation window (between 𝑅𝑟𝑒𝑐𝑜𝑛𝑓 and 𝑅𝑣𝑎𝑙) and that the

communication budget is exceeded sooner if we keep the new configuration (RVA-disabled in Figure 12).

Therefore, the RVA decided to revert to the original configuration at 𝑅𝑣𝑎𝑙 which proved to be a good

decision as the scenario with RVA enabled reached a higher accuracy within the allocated communication

budget than the scenario with RVA disabled.

𝑅𝑟𝑣𝑎
𝑓𝑖𝑛𝑎𝑙

and 𝑅𝑟𝑣𝑎−𝑑𝑖𝑠𝑎𝑏𝑙𝑒𝑑
𝑓𝑖𝑛𝑎𝑙

 show the final rounds of both scenarios when the available communication

budget has been used.

Figure 11. RVA exp. #1: accuracy

Figure 12. RVA exp.#1: total cost

2.3.2.2 RVA exp. #2: IID setup with performance improvement

Figure 13 shows the environmental setup of the experiment showing performance improvement in the

IID environment. Like in RVA exp. #1, at 𝑅𝑟𝑒𝑐𝑜𝑛𝑓 nodes n10 and n11 join the pipeline, but in this experiment,

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 16

they hold large datasets. A large dataset refers to the dataset with all 10 classes and 1000 samples per

class.

Figure 13. RVA exp. #2: environmental setup

The results in Figure 14 and Figure 15 show the improvement in model performance after the

reconfiguration round 𝑅𝑟𝑒𝑐𝑜𝑛𝑓. This improvement was detected during the validation window, between

𝑅𝑟𝑒𝑐𝑜𝑛𝑓 and 𝑅𝑣𝑎𝑙. In Figure 14 we can see the predicted performance with the original configuration made

with regression: its final round happens after the final round with the new configuration because the

original configuration had a lower communication cost per round, as depicted in Figure 15. However, it

was predicted that the final accuracy value when the budget exceeds would be higher with the new

configuration, so the new configuration was kept. Also, in Figure 15 we can see how the cost per round

increases after the reconfiguration as we have two additional node updates in each round. Also, we can

see the cost of reconfiguration change as a spike which occurs during the round 𝑅𝑟𝑒𝑐𝑜𝑛𝑓.

Figure 14. RVA exp. #2: accuracy

Figure 15. RVA exp. #2: cost per round

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 17

2.3.2.3 RVA exp. #3: Non-IID setup with performance degradation

Figure 16 shows the environmental setup of the experiment showing performance degradation in the

non-IID environment. At 𝑅𝑟𝑒𝑐𝑜𝑛𝑓 a node n14 joins the cluster of node n2 with a dataset representing classes

0 and 1, which are already covered within the cluster.

Figure 16. RVA exp. #3: environmental setup

The evaluation results show the trend of accuracy and total cost over global rounds for two scenarios:

with RVA and without RVA. In Figure 17 we can see that there is even a drop in performance after the

reconfiguration when n14 joins the cluster, which is a result of clusters being imbalanced. Therefore, in

𝑅𝑣𝑎𝑙 RVA decides to revert the pipeline to the original configuration without node n14. We can see that

the RVA made the right decision, because it outperforms the scenario without using RVA which would

keep the new configuration. In Figure 18 we can see how the total cost is changing over global rounds.

We can see that in scenario with RVA enabled the budget is reached later than in scenario without RVA

because the RVA reverted to the original configuration at round 𝑅𝑟𝑒𝑐𝑜𝑛𝑓 and the original configuration is

less costly per round since it does include model updates from node n14.

Figure 17. RVA exp. #3: accuracy

Figure 18. RVA exp. #3: total cost

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 18

2.3.2.4 RVA exp. #4: Non-IID setup with performance improvement

Figure 19 shows the environmental setup of the experiment showing performance improvement in the

non-IID environment. At 𝑅𝑟𝑒𝑐𝑜𝑛𝑓 node n13 joins the cluster of node n3 with a dataset representing classes

8 and 9, which are not present in the cluster. This makes both clusters balanced with equal data

distributions.

Figure 19. RVA exp. #4: environmental setup.

The results in Figure 20 and Figure 21 show the improvement in model performance after the

reconfiguration round 𝑅𝑟𝑒𝑐𝑜𝑛𝑓. This improvement is detected at 𝑅𝑣𝑎𝑙 and RVA decides to keep the new

configuration. In Figure 20 we can see how RVA made a prediction that keeping the new configuration

would produce better performance than reverting to the original even though the original configuration

would reach the budget at a later global round. In Figure 21 we can see the growth in cost per round after

reconfiguration and also a spike at 𝑅𝑟𝑒𝑐𝑜𝑛𝑓 which is due to the added cost of reconfiguration change.

Figure 20. RVA exp. #4: accuracy.

Figure 21. RVA exp. #4: cost per round.

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 19

3 Spatio-Temporal Graph Neural Networks

Graph Neural Networks (GNNs) [4] are special types of neural networks capable of working with a graph

data structure, where nodes represent entities or individual data points in the graph, and edges represent

the relationship or interactions between pairs of nodes. This representation allows GNN to capture spatial

changes by considering the interconnectedness of nodes within the network. However, GNNs cannot

capture both spatial and temporal dependencies, hence Spatio-Temporal Graph Neural Networks (ST-

GNNs) have been developed. The ability to capture both spatial and temporal dependencies enables the

model to simultaneously account for spatial correlations between nodes and temporal correlations over

time, making it particularly suited for spatio-temporal forecasting tasks like traffic prediction.

Multiple ST-GNNs have been developed Error! Reference source not found. , such as Graph Recurrent N

etwork (GRN) [6], Spatio-Temporal Graph Convolutional Network (ST-GCN) [7], Graph Attention LSTM

Network [8], and many more [5]. Each technique addresses specific challenges or offers unique

advantages over others. The model used in this project is the Spatio-Temporal Graph Convolutional

Network (ST-GCN) due to their superior ability to handle traffic prediction tasks in the IoT context

compared to other techniques by achieving the best performance with statistical significance in all

evaluation metrics (MAE, MAPE, and RMSE) [7].

However, previous works have mainly focused on ST-GNNs trained in centralized environments, where

data from all sensors is continuously collected. However, the task of collecting geo-distributed data,

performing deep learning training and inference, and sending back commands, is challenging to perform

reliably in real-time in a centralized system. As sensor networks expand―either by covering larger, more

distant regions or by increasing their density to provide more granular sensing in urban areas― scaling a

central control system to handle the increased volume of data in real-time with low-latency becomes

increasingly difficult. Furthermore, any issues in the central control system can easily result in a complete

interruption of the service across the whole sensor network, requiring significant investments to maximize

reliability. Given the key role played by mobility infrastructure in our societies, a centralized system can

also become a significant target for hostile actors and a major cyber-weakness in strategic infrastructure

management.

To the best of our knowledge, there has been no prior research specifically focused on decentralized or

even semi-decentralized training of ST-GNNs for traffic prediction. One relevant work by L. Giaretta et. al.

[9] explores the challenges and solutions associated with fully decentralized training. However, their

solution is not tailored to ST-GNNs, but rather to Graph Convolutional Network (GCN), limiting its

applicability to tasks that require both spatial and temporal correlations. While there is no prior research

work for decentralized training for ST-GNNs, M. Nazzal et. al. [10] developed Heterogeneous Graph Neural

Network with LSTM (HetGNN-LSTM) for taxi-demand prediction and tested it in a semi-decentralized

environment, where nodes were partitioned into cloudlets, without any central aggregator. However,

their solution only enables semi-decentralized inference by deploying a pre-existing model, with no

support for semi-decentralized training.

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 20

Figure 22. Graph partitioning and communication. a) Geographically distributed sensor network and
base stations b) Graph partitioning of the sensors into cloudlets based on geographical proximity. c)

Cloudlet-to-cloudlet communication network for exchanging node features and model updates. d) After
communicating with neighbouring cloudlets, each cloudlet can construct the ST-GNN subgraph required

for training on its local nodes (reported in [11])

Hence, we adopt a semi-decentralized ST-GNN architecture inspired by Nazzal et al. [10], as it's one of the

most effective architectures for distributed training. Figure 22 shows key components of such

architecture. In Figure 22-a, traffic network is represented as a graph, where nodes correspond to IoT-

devices, and edges represent road connections based on physical proximity. In Figure 22-b, the graph is

partitioned into subgraphs based on geographical proximity, each managed by a local cloudlet. In Figure

22-c, cloudlets form a communication network for exchanging necessary node features and model

updates. After communicating with each other, each cloudlet constructs ST-GNN subgraph required for

training on its local nodes, as shown in Figure 22-d. Using this architecture, we evaluate four different

training setups ― centralized, traditional FL, server-free FL, and Gossip Learning ― for ST-GNNs in the

context of traffic prediction, with the centralized setup serving as a baseline for comparing the semi-

decentralized approaches.

3.1 Traditional Federated Learning

Traditional FL [12] is a collaborative machine learning (ML) approach where multiple clients work together

to train a model, coordinated by a central aggregator. Instead of sharing raw data, which remains stored

locally on each client device, the clients exchange only model updates with the server. These updates

contain just the minimum information needed for the learning task, carefully scoped to limit the exposure

of client data. The central aggregator then aggregates these focused updates as soon as they are received,

ensuring that the learning process is both efficient and compliant with data minimization principles.

3.2 Server-free Federated Learning

Server-free FL [13] is a decentralized variant of the traditional FL approach. Unlike traditional FL, where a

central aggregator is responsible for coordinating the model updates, server-free FL operates without a

central entity. Instead, participating devices communicate directly with one another to exchange model

parameters and perform local updates. After initializing their models, devices exchange model parameters

with their neighbours, aggregate these received models with their own local model, and proceed to train

on a subset of data. This iterative process allows for continuous refinement of models across the network,

as the updated models are exchanged again between neighbouring devices.

3.3 Gossip Learning

Gossip Learning [14] is a decentralized protocol for training ML models in distributed settings without the

need for a central coordinator. It is designed to be highly scalable and robust, allowing model updates to

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 21

be propagated efficiently across a network of devices or nodes. Each device stores two models in its

memory (as a FIFO buffer), typically representing the most recent models received from neighbouring

devices. At each iteration of the gossip protocol, a device averages the weights of these two models to

create an aggregated model. The device then performs one local training step using its own data, refining

the aggregated model based on its local observations. Once the model is updated, the device forwards it

to a randomly chosen device in the entire network. This process is repeated across the network, ensuring

that models continuously evolve and improve as they traverse different nodes, collecting knowledge from

the data they encounter at each location.

3.4 Experimental Setup

All experiments were run with a fixed number of 40 epochs, utilizing the High-Performance Computing

(HPC) system Leonardo Booster, which features 4x NVIDIA A100 SXM6 64GB GPUs, with only 1 being used

during training. The software environment used for the experiments included Python 3.10.14, PyTorch

2.3.1, and PyTorch Geometric 2.5.3.

For model architecture, we used 2 spatio-temporal blocks (ST-blocks), with GLU activation function, a

learning rate of 0.0001, dropout of 0.5, weight decay of 0.00001, and a batch size of 32. MAE is used as

the training loss, Adam was chosen as the optimization algorithm, and learning rate scheduler was applied

with the StepLR strategy, where the step size was set to 5, and the decay factor was set to 0.7. The

temporal and spatial kernel size was set to 3 for all experiments, with Chebyshev convolution as

convolutional layer. All experiments use 60 minutes as the historical time window, i.e., 12 observed data

points.

Additionally, sensors were distributed across 7 cloudlets based on proximity and communication range.

Each cloudlet can communicate with other cloudlets and IoT-devices only if they are within an 8 km range.

This limitation directly impacts the server-free FL approach by restricting the number of cloudlets that can

exchange model updates. In contrast, this constraint does not affect Gossip Learning, as model updates

are sent to a randomly selected cloudlet across the entire network, regardless of proximity. Figure 23

shows how sensors are assigned to cloudlets and their respective communication ranges for both the

METR-LA and PeMS-BAY datasets. This partitioning reflects the semi-decentralized structure used for our

distributed training approach.

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 22

Figure 23. Sensor assignment to cloudlets based on communication range

3.4.1 Datasets
To evaluate the performance of our setups, we utilize two real-world public traffic datasets, PeMS-BAY

and METR-LA, which are collected by Caltrans performance measurement system. Both datasets consist

of traffic data aggregated in 5-minute intervals, with each sensor collecting 288 data points per day. The

details of datasets are listed in Table 4.

Table 4 Details of the METR-LA and PeMS-BAY datasets

Datasets Nodes Interval TimeSteps Attribute

METR-LA 207 5 min 34,272 Traffic speed

PeMS-BAY 325 5 min 52,166 Traffic speed

The spatial adjacency matrix is constructed from the actual road network based on distance using the

formula from ChebNet [15]. Specifically, it encodes the spatial relationships between nodes by assigning

weights to edges based on the inverse of the pairwise distances between connected nodes, effectively

capturing the connectivity and proximity of locations in the traffic network. Additionally, the data were

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 23

pre-processed for efficient model training and evaluation. For example, if we want to utilize the historical

data spanning one hour to predict the data the next hour, we pack the sequence data in group of 12 and

convert it into an instance. The dataset was then split into training, validation, and test sets in a 70:15:15

ratio. Additionally, to mitigate the impact of varying data magnitudes, we applied standardization to

normalize the original data values, reducing the impact of the large difference in value.

3.4.2 Evaluation Metrics
In our experiments, we use three commonly adopted metrics for traffic forecasting to evaluate the

performance of the different setups: Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and

Weighted Mean Absolute Percentage Error (WMAPE). The formulas are as follows:

𝑀𝐴𝐸(𝑥, 𝑥) =
1

𝑛
∑ |𝑦𝑖 − ŷ𝑖|

𝑛

𝑖=1

𝑅𝑀𝑆𝐸(𝑥, 𝑥) = √
1

𝑛
∑(𝑦𝑖 − ŷ𝑖)

𝑛

𝑖=1

𝑊𝑀𝐴𝑃𝐸(𝑥, 𝑥) =
∑ |𝑦𝑖 − ŷ𝑖|𝑛

𝑖=1

∑ |𝑦𝑖|𝑛
𝑖=1

Where x = x1,…,xn denotes the ground truth values of vehicle speed, and x̂ = x̂1,…, xn̂ represents their

predicted values.

We compute these metrics across three forecasting horizons ― short-term (15 min), mid-term (30 min)

and long-term (60 min) ― to capture performance variations over time. For centralized and FL setups,

metrics are derived from the main server's aggregated model, while for server-free FL and Gossip

Learning, they are computed as a weighted average of individual cloudlet predictions. This ensures a

consistent and fair comparison across all approaches.

3.5 Experimental Results

3.5.1 Comparison of training setups
Table 5 presents the results of four training setups, across both datasets for three forecast horizons. The

table highlights that the centralized setup consistently outperforms the semi-decentralized methods

across all evaluation metrics and forecast horizons. The observed performance gap is extremely small

between all 4 setups, especially for MAE and RMSE. For example, in the METR-LA dataset, the difference

in MAE between the centralized setup and the best semi-decentralized setup is 0.1 miles per hour for

short-term prediction, which is negligible compared to the difference between normal traffic flow and a

traffic jam, typically measured in tens of miles per hour. While WMAPE shows a slightly more noticeable

gap as the forecast horizon increases, particularly for the METR-LA dataset, the difference between

centralized and semi-decentralized methods remains within a narrow margin across all horizons. In other

words, this difference is insignificant to disregard the competitive performance of semi-decentralized

approaches compared to the centralized one, indicating no practical drawbacks in adopting semi-

decentralized methods for traffic prediction use-case.

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 24

Table 5. Performance comparison (MAE [mile/h]/RMSE [mile2/h2]/WMAPE [%]) of four different setups
[11]

Datasets Setups
15 min 30 min 60 min

MAE RMSE WMAPE MAE RMSE WMAPE MAE RMSE WMAPE

M
ETR

-LA

Centralized 3.78 9.05 7.45 5.14 11.61 10.12 7.35 14.59 14.47

Traditional FL 3.97 9.01 7.82 5.40 11.41 10.63 7.82 14.48 15.40

Server-free FL 3.90 8.98 7.78 5.35 11.37 10.67 7.79 14.41 15.55

Gossip Learning 3.88 9.04 7.74 5.43 11.35 10.85 7.56 14.42 15.10

P
eM

S-B
A

Y

Centralized 1.48 3.09 2.38 1.97 4.23 3.17 2.59 5.41 4.17

Traditional FL 1.50 3.12 2.42 2.03 4.29 3.27 2.67 5.51 4.29

Server-free FL 1.50 3.12 2.42 2.01 4.25 3.23 2.65 5.44 4.28

Gossip Learning 1.51 3.12 2.43 2.03 4.28 3.26 2.63 5.39 4.24

3.5.2 Cloudlet metric analysis
Figure 24 illustrates the variability in WMAPE across individual cloudlets for all training setups and both

datasets. The results are shown for short-term and long-term prediction horizons, providing a

comprehensive view of how errors distribute geographically across cloudlets for different prediction

horizons. We focus exclusively on WMAPE because all metrics exhibit similar patterns of spread across

cloudlets. However, WMAPE is particularly insightful as it highlights the relative error in percentage terms,

making it easier to interpret and compare the variability across different cloudlets.

From the figure, we observe consistent spread in WMAPE values across cloudlets, irrespective of the

training setup, dataset, or prediction horizon. This consistency suggests that the variability in cloudlet

performance is not an artifact of the training setups, but is instead intrinsic to the geographical

characteristics of the datasets and sensor partitioning, alongside the values of data itself. Each cloudlet's

performance is influenced by the distribution of sensors assigned to it and the corresponding traffic

patterns in that geographical region.

Additionally, while global weighted averages reported in Table 5 provide a summary of performance, they

fail to capture the significant differences in performance across individual cloudlets. Previous works have

primarily focused on global averages, overlooking notable challenge of heterogeneous performance

among cloudlets. This oversight can lead to an incomplete understanding of model performance in

distributed traffic forecasting systems, resulting in unexpected discrepancies, suboptimal decision-making

and potential disruptions in real-world usage compared to testing.

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 25

Figure 24. WMAPE for individual cloudlets (reported in [11])

3.5.3 Analysis of semi-decentralized overheads
Semi-decentralized learning naturally introduces several overheads, primarily stemming from the need to

communicate and aggregate models, increasing communication and computational costs compared to

centralized training. Additionally, due to graph partitioning, node features must be exchanged between

cloudlets, further contributing to communication and compute demands. Table 6 breaks down these

overheads across three key aspects: model transfer, node feature transfer, and floating-point operations

(FLOPs).

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 26

Table 6. FLOPs and average model and node feature transfer size per cloudlet [11]

Datasets Setups Model
[MB]/epoch

Training
FLOPs/epoch

Aggregation
FLOPs/epoch

Node feature
[MB]

M
ETR

-LA

Centralized - 0.24T - 0.68

Traditional FL 0.13 1.56T 0.16M 3.69

Server-free FL 0.23 1.56T 0.25M 3.69

Gossip Learning 0.13 1.56T 0.42M 3.69

P
eM

S-B
A

Y

Centralized - 0.58T - 1.61

Traditional FL 0.13 3.89T 0.16M 9.44

Server-free FL 0.26 3.89T 0.56M 9.44

Gossip Learning 0.13 3.89T 0.42M 9.44

One of the most significant communication costs in semi-decentralized training is the transfer of node

features. Unlike centralized training, where each sensor's features are sent once to a central server,

distributed setups require features to be transferred to potentially multiple cloudlets. This increase is due

to our distance-based weighted adjacency matrix creating a relatively dense graph, where each sensor

node is connected to all other nodes within a predefined radius, and the use of a 2-hop GNN, meaning

that each cloudlet not only needs features from its direct neighbours but also from the neighbours of

those neighbours, significantly expanding the portion of the graph that each cloudlet must process.

Consequently, each cloudlet must store and process a substantial portion of the entire graph, leading to

a several-fold increase in communication compared to centralized setups. However, as the network grows

larger, the portion of the graph stored in each cloudlet will decrease, as cloudlets farther away will not

have connected sensors. Despite the increase, the overall feature transfer per cloudlet remains

manageable, typically just a few megabytes.

In contrast to node feature transfers, model transfer per epoch remains relatively small across all

distributed setups. This is primarily due to the compact size of the ST-GCN models used in our

experiments. While model transfers accumulate over multiple epochs, leading to higher total

communication overhead, the per-epoch cost remains in the order of megabytes. As shown in Figure 25,

distributed setups, particularly server-free FL, require more epochs to converge than centralized training,

compounding the total model transfer cost. Despite this, the overall communication overhead from model

transfers remains modest and does not present a significant bottleneck. Even in the worst-case scenario

of server-free FL, where all cloudlets potentially communicate with each other, the model transfer

overhead remains manageable.

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 27

Figure 25. Validation loss over FLOPs and epochs for short-term prediction (reported in [11])

In terms of computation, we see that aggregation costs are many orders of magnitude smaller than

training costs, so they do not represent a reason to avoid semi-decentralized training. In contrast, the

training costs in distributed setups are several times higher than in centralized training. This mirrors the

pattern observed in feature transfer, as the root cause is similar. Each cloudlet must run the GNN on its

local subgraph, which often includes duplicated nodes and features due to the overlapping receptive fields

of neighbouring cloudlets. This duplication leads to additional computations, as cloudlets must compute

partial embeddings for nodes they do not have to facilitate GNN message passing within their local

subgraph. Only the cloudlet that owns a node can compute its full k-hop embedding and make accurate

predictions. In contrast, a centralized system can efficiently train over the entire graph without such

redundancies, avoiding duplicated computations.

Our analysis reveals that the major sources of overhead in semi-decentralized training do not stem from

the distributed learning algorithms themselves. If these algorithms were applied to non-spatial models,

the overheads would be minimal. Instead, the overheads arise from the highly interconnected spatial

nature of traffic data and the need to partition these spatial connections across cloudlets. Overall, the

trade-off between the flexibility and scalability of semi-decentralized training and the increased

communication and computational overheads highlights the challenges of maintaining spatial

dependencies in distributed setups. While the communication and computation costs are higher than

centralized training, they remain within acceptable limits, making semi-decentralized approaches a

feasible solution for scalable traffic prediction in smart mobility applications.

We report further details about the experimental setup and results presented this section in the following

paper (currently under review, submitted to a conference call for papers) [11].

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 28

4 Measuring energy consumption

4.1 FL with edge devices

For this demonstrator, we utilize the CIFAR-100 dataset, distributed non-identically and non-

independently across clients. To accommodate this setup, we implement a different model compared to

the one used in Section 2.3, the Wide ResNet. Regarding the issue described in the previous demonstrator

(D1.2) about the utilization of GPU of the Jetson Nano device, we have solved it with the assistance of a

Docker image containing all the installations compatible with the JetPack SDK 4.4.1, including PyTorch.

The evaluation of energy consumption of different devices during the AI model training in a FL setup

included using a semi-large model with 8.6 million learnable parameters for image classification on a

dataset with 100 classes, distributed across 8 edge devices. The setup includes one Jetson AGX Orin, five

Jetson Nanos, and two Raspberry Pi 4 devices. The Jetson AGX Orin utilizes its CPU, the Raspberry Pi

devices employ CPUs, and four Jetson Nanos use GPUs while one uses a CPU for training the FL model.

The experiment uses a CIFAR-100 dataset and the WideResNet model, implemented in Python with the

PyTorch and Flower framework. The Dirichlet distribution is applied to simulate real-world data

distribution. Power and energy consumption for each device are measured using the WLAN power socket

throughout the learning process.

CIFAR-100 is a widely used computer vision dataset for benchmarking image classification models. It

contains 100 classes, each with 500 training images and 100 testing images. The 100 classes are grouped

into 20 superclasses containing various aspects of nature, infrastructure, animals, people, vehicles, food

and household items. The images have dimensions of 32x32 and are in RGB format. To simulate a realistic

FL environment, the employed data distribution across clients was non-IID and created by scattering data

from each class in uneven quantities. The Dirichlet distribution is utilized to simulate non-IID data across

clients by adjusting class proportions. Its parameter alpha controls the level of skewness: smaller values

create more skewed distributions, while larger values result in more uniform (IID) distributions. An alpha

of 0.5 is chosen as the parameter for the Dirichlet distribution in this experiment. Figure 26 illustrates the

non-IID setup across clients, with each bubble representing the number of images containing a specific

class label. The largest bubble corresponds to approximately 400 data points.

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 29

Figure 26. Data distribution across clients: non-IIID allocation, bubble size shows the number of images
per class for each client

WideResNet (Wide Residual Network) [3] is a modified version of the ResNet that contains wider

convolutional layers (number of channels), with reduced depth (number of layers). This architecture

allows for faster training time and improved performance with skip connections effectively addressing the

vanishing gradient issue. Reduced computational overhead makes WideResNet better suited for training

on edge devices compared to more complex state-of-the-art networks. The model architecture is shown

in Table 7.

Table 7. WideResNet model architecture

Layer Output Shape Details

Input [3,32,32] Input image

Conv2D [16, 32, 32] Initial convolution with 16 channels

Basic Block (4) [16, 32, 32] 4 x Residual Blocks, each consisting of two

convolutional layers with BatchNorm after each.

Output of the block: skip connection links the block's

input directly to the output of the second

convolutional layer, with ReLU activation applied

after the addition.

Basic Block (5) [160, 16, 16] 5 x Residual Blocks

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 30

Basic Block (5) [320, 8, 8] 5 x Residual Blocks

Linear layer [100,] Fully connected layer for classification into 100

classes.

Total params - 8,662,100 total parameters

To compare energy consumption, four devices are connected to a WLAN power socket. These include one

Jetson AGX Orin, which uses its CPU to train the model, two Jetson Nanos (one utilizing its CPU and the

other its GPU), and a Raspberry Pi 4 utilizing its CPU. The specifications of the devices are provided in

Table 8.

Table 8. Hardware specifications of the devices

Device - model CPU GPU RAM

Jetson AGX Orin
Developer Kit

12-core Arm Cortex
A78AE v8.2

2048-core NVIDIA
Ampere architecture
GPU with 64 Tensor
Cores

64GB

Jetson Nano Quad-core Arm Cortex-
A57

128-core NVIDIA
Maxwell architecture
GPU

4GB

Raspberry Pi 4 Model B Quad core Arm Cortex-
A72

 - 4GB

The training was conducted over 15 rounds, with each client participating in every round, and each round

consisting of two epochs. Figure 27 contains plots generated by TensorBoard, showing training loss,

training accuracy, test loss and test accuracy. The final test accuracy reached during the experiment was

approximately 43%.

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 31

Figure 27. Training/test loss and accuracy

Power measurements are collected using the ‘Delock WLAN Power Socket Switch MQTT with energy

monitoring’ switch, which sends data every 30 seconds. The entire training process lasted approximately

22 hours. Figure 28-31 show the power consumption over time for different devices. The Jetson AGX Orin

consumes approximately 15 watts during model training, while the Jetson Nano with CPU uses about 7

watts, the Jetson Nano with GPU uses around 8 watts, and the Raspberry Pi uses roughly 6 watts.

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 32

Figure 28. Jetson Nano utilizing GPU - Power consumption during training

Figure 29. Jetson Nano utilizing CPU - Power consumption during training

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 33

Figure 30. Raspberry Pi 4 utilizing CPU - Power consumption during training

Figure 31. Jetson AGX Orin utilizing CPU - Power consumption during training

To calculate energy from the power data, it is assumed that power consumption remains constant

throughout each 30-second interval. The energy consumed by the device during this period is measured

using the following formula:

𝐸  =  
𝑃  × ∆𝑡

3600
[𝑘𝑊ℎ]

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 34

Here, P represents the power measured during the interval, and Δt is the duration of the interval, which

is 30 seconds. Figure 32-35 display the energy consumption during training. Each line on the graph

represents the energy consumption over a 2-minute interval, achieved by aggregating the energy

consumption of four consecutive 30-second intervals to achieve clarity of the graphs. The Jetson AGX Orin

consumed the most energy over time, approximately 227 kWh, followed by the Jetson Nano using the

CPU at around 131 kWh, the Raspberry Pi 4 at around 120 kWh, and the Jetson Nano with the GPU, which

consumed roughly 46 kWh of energy.

Figure 32. Jetson Nano utilizing GPU - Aggregated energy usage per 2-minute intervals during training

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 35

Figure 33. Jetson Nano utilizing CPU - Aggregated energy usage per 2-minute intervals during training

Figure 34. Raspberry Pi 4 utilizing CPU - Aggregated energy usage per 2-minute intervals during training

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 36

Figure 35. Jetson AGX Orin utilizing CPU - Aggregated energy usage per 2-minute intervals during
training

4.2 WebAssembly runtime on Raspberry PI

This section analyses the performance of WebAssembly on Raspberry Pi devices. The analysis compares

the performance metrics between the Raspberry Pi 4 Model B and Raspberry Pi 3 Model B+ in the

execution of three projects, "gpio-http", "matrix" and “nn-module”. These tests, conducted with various

WebAssembly runtime systems (Wasmtime, Wasmer, and WasmEdge), track parameters like CPU and

memory usage, execution speed, file size, and energy consumption. Both Raspberry Pi devices use ARMv8-

A 64-bit architecture processors, with differences in memory and processing power. The findings, shown

in a series of tables, highlight how each runtime influences performance across different computational

tasks and hardware setups, providing insights into efficiency and resource management for WebAssembly

applications on edge devices.

The experiments were conducted on Raspberry Pi 4 Model B device, which feature an ARM Cortex-A72

processor [16], and Raspberry Pi 3 Model B+, which has an ARM Cortex-A53 processor [16]. The Raspberry

Pi 4 used has 4GB of RAM, while the Raspberry Pi 3 has 1GB. During the execution of the projects, the

following parameters were monitored:

• CPU usage,

• memory usage,

• file size,

• execution speed, and

• energy consumption.

File size was determined by summing the sizes of the binary file of the compiled Rust project and the size

of the WebAssembly file. Execution speed was tracked using the Instant structure from Rust's standard

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 37

library, which is designed for time handling. CPU and memory utilization was monitored for two minutes

during execution using the htop tool [18],. To collect data on electric power consumption, a Delock WLAN

socket was used, which allows monitoring of electricity usage through a web interface.

The tables displaying the project testing results report the following parameters:

• Runtime - the execution system used to run the WebAssembly module;

• CPU - percentage of CPU utilization;

• RAM - percentage of memory utilized by the process;

• Current Intensity (mA) - average electric current intensity during execution, expressed in

milliamper;

• Project (MB) - file size of the runtime that runs the module; and

• Module (KB) - size of the WebAssembly module.

To illustrate the impact of project execution, Table 9 and Table 10 show the parameters for Raspberry Pi

4 and Raspberry Pi 3 devices when no demanding processes are running.

Table 9. Parameters of the Raspberry Pi 4 device during idle period

CPU(%) RAM(%) Current (mA)

0

4 60

Table 10. Parameters of the Raspberry Pi 3 device during idle period

CPU (%) RAM (%) Current (mA)

0

26.6 60

4.2.1 Project gpio-http
This project accesses the device’s hardware and sends an HTTP POST request to the server every two

seconds. Parameters were monitored for approximately two minutes of execution. Execution data for the

project is presented in Table 11 and Table 12.

Table 11. Parameters of the Raspberry Pi 4 device during execution of the gpio-http project

Runtime CPU (%) RAM (%) Current (mA) Project (MB) Module (KB)

Wasmtime 11.8 0.5 61.46 16 35

Wasmer 11.0 0.6 63.30 29 35

WasmEdge 2.0 1.0 62.69 2.4 1300

Table 12. Parameters of the Raspberry Pi 3 device during execution of the gpio-http project

Runtime CPU (%) RAM (%) Current (mA) Project (MB) Module (KB)

Wasmtime 28.2 2.2 62.90 16 35

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 38

Wasmer 30.6 2.4 63.10 29 35

WasmEdge 2.6 3.9 61.69 2.4 1300

The data shows that using the WasmEdge runtime results in significantly lower CPU utilization on both

devices compared to other runtimes. This is because the communication with the server is handled within

the WebAssembly module. However, there is a notable difference in the size of the WebAssembly module:

WasmEdge’s module occupies 1300 KB, whereas the modules used in the Wasmtime and Wasmer systems

occupy only 35 KB. Memory usage and current intensity are approximately the same across all runtimes.

Significant differences are evident in the project size, which is directly influenced by the execution system.

WasmEdge is the most efficient with 2.4 MB, followed by Wasmtime with 16 MB, and Wasmer with 29

MB.

4.2.2 Project matrix
The matrix project runs a WebAssembly module that multiplies two 5000x5000 matrices to gather data

during the execution of computationally intensive mathematical operations. Execution data for this

project is shown in Table 13 and Table 14.

Table 13. Parameters of the Raspberry Pi 4 device during execution of the matrix project

Runtime CPU (%) RAM (%) Current (mA) Project (MB) Module (KB)

Wasmtime 100 15.5 71.33 13 62

Wasmer 100 15.6 72.33 26 62

WasmEdge 100 15.1 71.33 2.2 129

Table 14. Parameters of the Raspberry Pi 3 device during execution of the matrix project

Runtime CPU (%) RAM (%) Current (mA) Project (MB) Module (KB)

Wasmtime 100 50.2 73.12 13 62

Wasmer 100 50.4 73.91 26 62

WasmEdge 100 58.9 72.87 2.2 129

Matrix multiplication is a CPU-intensive task, and these results show the advantage of the newer processor

in the Raspberry Pi 4 device. On this device, each project run resulted in 100% utilization of one of the

four CPU cores and approximately 15% memory usage. The average current intensity was 71.33 mA for

the Wasmtime and WasmEdge systems, and 72.33 mA for the Wasmer system, about 20% higher than

when the device was idle.

On the Raspberry Pi 3 device, one CPU core was also fully utilized (100%), with memory usage reaching

50%. The current intensity was 73.12 mA for Wasmtime, 73.91 mA for Wasmer, and 72.87 mA for

WasmEdge. The differences in project sizes are similar to the previous project, with WasmEdge being the

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 39

smallest at 2.2 MB, followed by Wasmtime at 13 MB, and Wasmer at 26 MB. Regarding the WebAssembly

module size, the modules used in the Wasmtime and Wasmer systems occupy 62 KB, while WasmEdge

runs an additionally optimized module of 129 KB.

For this project, the time required for matrix multiplication was also monitored, with data presented in

Table 15. There were significant differences in execution times between devices. When using the

Wasmtime runtime, the Raspberry Pi 3 requires 3.75 times more time for matrix calculations than

Raspberry Pi 4, 4.7 times more with the Wasmer runtime, and 4.8 times more with WasmEdge. WasmEdge

achieved the fastest matrix multiplication on Raspberry Pi 4, followed by Wasmer, and then Wasmtime.

On the Raspberry Pi 3, WasmEdge was again the fastest, with Wasmtime in second and Wasmer in third

place.

Table 15. Average time for multiplying 5000x5000 Matrices

Device Runtime Time (s)

Raspberry Pi 4 Wasmtime 152.749

Raspberry Pi 4 Wasmer 134.814

Raspberry Pi 4 WasmEdge 119.558

Raspberry Pi 3 Wasmtime 573.785

Raspberry Pi 3 Wasmer 634.586

Raspberry Pi 3 WasmEdge 572.085

4.2.3 Project nn-module
In this project, a TensorFlow Lite model was implemented to recognize bird species based on an image.

The model loading and inference are done entirely within a WebAssembly module using the wasi-nn

library, which currently contains experimental structures and interfaces for machine learning.

This project runs exclusively on the WasmEdge runtime. As shown in Table 16, running inference on a

TensorFlow Lite model for bird species recognition is a demanding task for the CPU, though not as

intensive for memory. The measured current intensity was 23% higher than when the device was idle. The

newer processor’s advantage is also evident here: inference time on the Raspberry Pi 4 is only 150

milliseconds, while on the Raspberry Pi 3 it takes 465.227 seconds which is a significant difference.

Table 16. Parameters for the nn-module project on Raspberry Pi devices

Device CPU (%) RAM (%) Current (mA) Module (KB) Inference Time (s)

Raspberry Pi 4 100 3.2 74 997 0.150

Raspberry Pi 3 100 14.8 74 997 465.227

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 40

The results of these experiments underscore the impact of runtime choice and hardware differences on

WebAssembly performance in edge computing environments. WasmEdge demonstrated lower CPU usage

and smaller project sizes, making it well-suited for lightweight applications on both Raspberry Pi models.

However, for CPU-intensive tasks, like matrix multiplication, all runtimes reached maximum CPU

utilization, with the Raspberry Pi 4 offering better memory efficiency and lower current intensity than the

Raspberry Pi 3. Overall, these findings highlight the importance of matching runtime environments with

specific application needs to optimize resource usage on constrained devices.

5 Conclusion

This deliverable presents a demonstrator of state-of-the-art mechanisms for adaptive orchestration,

energy efficiency, and machine learning (ML) workflows, explored through live experiments conducted in

the relevant testbeds. The goal of this demonstrator was to assess and integrate mechanisms into a data-

driven orchestration middleware for federated learning environments, enhancing the performance and

energy efficiency of IoT systems supporting ML workflows.

The demonstrator was presented in three parts. The first part focused on optimizing federated learning

pipelines through adaptive orchestration, where the development of the Reconfiguration Validation

Algorithm (RVA) and its associated framework demonstrated significant improvements in the dynamic

reconfiguration and flexibility of FL workflows. The second part explored the application of spatio-

temporal graph neural networks and gossip learning for decentralized FL setups. Experimental results

compared different training configurations and evaluated cloudlet performance, highlighting the benefits

of decentralized learning in reducing server dependency.

The third part combined the evaluation of energy consumption and performance optimization in FL and

WebAssembly runtime environments on edge devices. Experiments conducted on devices such as Jetson

AGX Orin, Jetson Nano, and Raspberry Pi 4 highlighted the energy efficiency of each device in FL training

scenarios, while performance tests on WebAssembly runtimes demonstrated resource usage and

efficiency in computational tasks like ML inference and matrix multiplication. The findings provide

valuable insights into optimizing energy use and computational efficiency in resource-constrained and

edge environments.

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 41

6 Acronyms

AI Artificial Intelligence

AIoT Artificial Intelligence of Things

CC Computing Continuum

FL Federated Learning

GNNs Graph Neural Networks

IID Independent and Identically Distributed

IoT Internet of Things

non-IID non-Independent and Identically Distributed

MQTT Message Queuing Telemetry Transport

QoS Quality of Service

7 List of Figures

Figure 1. Reconfiguration effect: scenario A .. 9
Figure 2. Reconfiguration effect: scenario B ... 9
Figure 3. RVA: execution flow ... 10
Figure 4. RVA: performance prediction .. 10
Figure 5. Framework for adaptive orchestration of HFL pipelines ... 11
Figure 6. Deployed topology to evaluate the framework ... 12
Figure 7. Performance evaluation: accuracy .. 13
Figure 8. Performance evaluation: total cost ... 13
Figure 9. Performance evaluation: cost per round ... 13
Figure 10. RVA exp. #1: environmental setup .. 15
Figure 11. RVA exp. #1: accuracy .. 15
Figure 12. RVA exp.#1: total cost .. 15
Figure 13. RVA exp. #2: environmental setup .. 16
Figure 14. RVA exp. #2: accuracy .. 16
Figure 15. RVA exp. #2: cost per round .. 16
Figure 16. RVA exp. #3: environmental setup .. 17
Figure 17. RVA exp. #3: accuracy .. 17
Figure 18. RVA exp. #3: total cost ... 17
Figure 19. RVA exp. #4: environmental setup. ... 18
Figure 20. RVA exp. #4: accuracy. ... 18
Figure 21. RVA exp. #4: cost per round. ... 18
Figure 22. Graph partitioning and communication. a) Geographically distributed sensor network and base

stations b) Graph partitioning of the sensors into cloudlets based on geographical proximity. c) Cloudlet-

to-cloudlet communication network for exchanging node features and model updates. d) After

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 42

communicating with neighbouring cloudlets, each cloudlet can construct the ST-GNN subgraph required

for training on its local nodes (reported in [11]) .. 20
Figure 23. Sensor assignment to cloudlets based on communication range ... 22
Figure 24. WMAPE for individual cloudlets (reported in [11]) ... 25
Figure 25. Validation loss over FLOPs and epochs for short-term prediction (reported in [11]) 27
Figure 26. Data distribution across clients: non-IIID allocation, bubble size shows the number of images

per class for each client .. 29
Figure 27. Training/test loss and accuracy.. 31
Figure 28. Jetson Nano utilizing GPU - Power consumption during training .. 32
Figure 29. Jetson Nano utilizing CPU - Power consumption during training .. 32
Figure 30. Raspberry Pi 4 utilizing CPU - Power consumption during training ... 33
Figure 31. Jetson AGX Orin utilizing CPU - Power consumption during training .. 33
Figure 32. Jetson Nano utilizing GPU - Aggregated energy usage per 2-minute intervals during training 34
Figure 33. Jetson Nano utilizing CPU - Aggregated energy usage per 2-minute intervals during training . 35
Figure 34. Raspberry Pi 4 utilizing CPU - Aggregated energy usage per 2-minute intervals during training

 .. 35
Figure 35. Jetson AGX Orin utilizing CPU - Aggregated energy usage per 2-minute intervals during training

 .. 36

8 List of Tables

Table 1. Performance evaluation: configuration parameters .. 13
Table 2. Performance evaluation: benchmark results .. 14
Table 3. RVA evaluation: configuration parameters ... 14
Table 4 Details of the METR-LA and PeMS-BAY datasets ... 22
Table 5. Performance comparison (MAE [mile/h]/RMSE [mile2/h2]/WMAPE [%]) of four different setups

[11] .. 24
Table 6. FLOPs and average model and node feature transfer size per cloudlet [11] 26
Table 7. WideResNet model architecture ... 29
Table 8. Hardware specifications of the devices .. 30
Table 9. Parameters of the Raspberry Pi 4 device during idle period .. 37
Table 10. Parameters of the Raspberry Pi 3 device during idle period .. 37
Table 11. Parameters of the Raspberry Pi 4 device during execution of the gpio-http project 37
Table 12. Parameters of the Raspberry Pi 3 device during execution of the gpio-http project 37
Table 13. Parameters of the Raspberry Pi 4 device during execution of the matrix project 38
Table 14. Parameters of the Raspberry Pi 3 device during execution of the matrix project 38
Table 15. Average time for multiplying 5000x5000 Matrices ... 39
Table 16. Parameters for the nn-module project on Raspberry Pi devices .. 39

D1.4 Demonstrator of New Mechanisms for Edge Orchestration, Energy-Efficiency and ML Workflows

Version 1.0 © Copyright 2024, Members of the AIoTwin Consortium 43

9 References

[1] Čilić, I., Lackinger, A., Frangoudis, P., Žarko, I. P., Furutanpey, A., Murturi, I., & Dustdar, S. (2024).

Reactive Orchestration for Hierarchical Federated Learning Under a Communication Cost Budget.

ArXiv. https://arxiv.org/abs/2412.03385

[2] Cloud Native Computing Foundation, “K3s - lightweight kubernetes,” https://docs.k3s.io/

[3] Zagoruyko, Sergey. "Wide residual networks." arXiv preprint arXiv:1605.07146 (2016).

[4] Wu, Zonghan, et al. "A comprehensive survey on graph neural networks." IEEE transactions on

neural networks and learning systems 32.1 (2020): 4-24.

[5] Sahili, Zahraa Al, and Mariette Awad. "Spatio-temporal graph neural networks: A survey." arXiv

preprint arXiv:2301.10569 (2023).

[6] Ruiz, Luana, Fernando Gama, and Alejandro Ribeiro. "Gated graph recurrent neural

networks." IEEE Transactions on Signal Processing 68 (2020): 6303-6318.

[7] Yu, Bing, Haoteng Yin, and Zhanxing Zhu. "Spatio-temporal graph convolutional networks: A deep

learning framework for traffic forecasting." arXiv preprint arXiv:1709.04875 (2017).

[8] Wu, Tianlong, Feng Chen, and Yun Wan. "Graph attention LSTM network: A new model for traffic

flow forecasting." 2018 5th international conference on information science and control

engineering (ICISCE). IEEE, 2018.

[9] Giaretta, Lodovico, and Sarunas Girdzijauskas. "Fully-Decentralized Training of GNNs using Layer-

wise Self-Supervision." (2023).

[10] Nazzal, Mahmoud, et al. "Semi-decentralized inference in heterogeneous graph neural networks

for traffic demand forecasting: An edge-computing approach." IEEE Transactions on Vehicular

Technology (2024).

[11] Kralj, Ivan, et. al. “Semi-decentralized Training of Spatio-Temporal Graph Neural Networks for

Traffic Prediction“ arXiv preprint arXiv: 2412.03188 (2024).

[12] Kairouz, Peter, et al. "Advances and open problems in federated learning." Foundations and

trends® in machine learning 14.1–2 (2021): 1-210.

[13] He, C., et al. "Central server free federated learning over single-sided trust social networks. arXiv

2019." arXiv preprint arXiv:1910.04956.

[14] Ormándi, Róbert, István Hegedűs, and Márk Jelasity. "Gossip learning with linear models on fully

distributed data." Concurrency and Computation: Practice and Experience 25.4 (2013): 556-571.

[15] Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst. "Convolutional neural networks

on graphs with fast localized spectral filtering." Advances in neural information processing

systems 29 (2016).

[16] Arm, “Cortex-a72”, https://www.arm.com/products/silicon-ip-cpu/cortex-a/ cortex-a72

[17] arm Developer, “Arm cortex-a series programmer’s guide for armv8-a”, https:

//developer.arm.com/documentation/den0024/a/ARMv8-A-Architecture-

andProcessors/ARMv8-A

[18] htop.dev, “htop”, https://htop.dev

https://arxiv.org/abs/2412.03385
https://docs.k3s.io/

